精英家教网 > 高中数学 > 题目详情

已知数列{an}满足:a1=1,a2=(a≠0),an+2=p·(其中P为非零常数,n∈N *

(1)判断数列{}是不是等比数列?

(2)求an

(3)当a=1时,令bn=,Sn为数列{bn}的前n项和,求Sn

 

【答案】

(1) 数列是等比数列.(2)。(3)

【解析】

试题分析:(1)由,得.    1分

,则

(非零常数),

数列是等比数列.     3分

(2)数列是首项为,公比为的等比数列,   

,即.         4分

时,

,    6分

满足上式, .       7分

(3)

时,.   8分

,              ①

    ②

,即时,①②得:

.            11分

而当时,,       12分

时,.13分

综上所述,      14分

考点:等比数列的通项公式;等比数列的前n项和公式;数列通项公式的求法;数列前n项和的求法;累乘法;错位相减法;

点评:(1)本题主要考查了等比数列的通项公式、等比数列求和公式、简单递推数列求通项、错位求和等知识,考查了学生的运算能力,以及化归与转化、分类讨论的思想.(2)利用错位相减法求和时,转化为等比数列求和,若公比是个参数(字母),则应先对参数加以讨论,一般情况下,分为等于1和不等于1两种情况分别求和。

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=1且an+1=
3+4an
12-4an
, n∈N*

(1)若数列{bn}满足:bn=
1
an-
1
2
(n∈N*)
,试证明数列bn-1是等比数列;
(2)求数列{anbn}的前n项和Sn
(3)数列{an-bn}是否存在最大项,如果存在求出,若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足
1
2
a1+
1
22
a2+
1
23
a3+…+
1
2n
an=2n+1
则{an}的通项公式
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=
3
2
,且an=
3nan-1
2an-1+n-1
(n≥2,n∈N*).
(1)求数列{an}的通项公式;
(2)证明:对于一切正整数n,不等式a1•a2•…an<2•n!

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足an+1=|an-1|(n∈N*
(1)若a1=
54
,求an
(2)若a1=a∈(k,k+1),(k∈N*),求{an}的前3k项的和S3k(用k,a表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•北京模拟)已知数列{an}满足an+1=an+2,且a1=1,那么它的通项公式an等于
2n-1
2n-1

查看答案和解析>>

同步练习册答案