精英家教网 > 高中数学 > 题目详情

已知直线x-2y+4=0经过椭圆数学公式的左顶点A和上顶点D,椭圆C的右顶点为B,点P是椭圆C上位于x轴上方的动点,直线AP,BP与直线l:x=5分别交于M,N两点.
(1)求椭圆C的方程;
(2)求线段MN的长度的最小值;
(3)当线段MN的长度最小时,Q点在椭圆上运动,记△BPQ的面积为S,当S在(0,+∞)上变化时,讨论S的大小与Q点的个数之间的关系.

解:(1)由已知得椭圆C的左顶点为A(-4,0),上顶点为D(0,2),
∴a=4,b=2,
故椭圆C的方程为
(2)直线AP的斜率k显然存在,且k>0,故可设直线AP的方程为y=k(x+4),从而M(5,9k),设P(x0,y0),则,∴直线BP的方程为:


当且仅当时等号成立
时,线段MN的长度取最小值3.
(3)由(2)知,当线段MN的长度取最小值时,,此时直线BP的方程为
设与BP平行的直线l':3x+2y+t=0
联立得10x2+6tx+t2-16=0
由△=36t2-40(t2-16)=0得
时,BP与l'的距离为,此时S△BPQ=
时,BP与l'的距离为,此时S△BPQ=
∴当时,这样的Q点有4个
时,这样的Q点有3个
时,这样的Q点有2个
时,这样的Q点有1个
时,这样的Q点不存在.
分析:(1)由已知得,椭圆C的左顶点为A(-4,0),上顶点为D(0,2),由此能求出椭圆C的方程.
(2)线AP的斜率k显然存在,且k>0,故可设直线AP的方程为y=k(x+4),从而M(5,9k).由题设条件可以求出 ,求得|MN|,再由均值不等式进行求解.
(3)由(2)知,当线段MN的长度取最小值时,,设与BP平行的直线l':3x+2y+t=0
联立得10x2+6tx+t2-16=0,利用△=36t2-40(t2-16)=0得最后即可解决问题.
点评:本题考查椭圆与直线的位置关系,(3)解答关系是利用方程的思想转化成根的判别等于0的问题,另外解题时要注意公式的灵活运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网选做题(考生只能从A、B、C题中选作一题)
A、已知直线x+2y-4=0与
x=2-3cosθ
y=1+3sinθ
(θ为参数)相交于A、B两点,则|AB|=
 

B、若关于x的方程x2+4x+|a-1|+|a+1|=0有实根,则实数a的取值范围为
 

C、如图,⊙O的直径AB=6cm,P是延长线上的一点,过点P作⊙O的切线,切点为C,连接AC,若∠CAP=30°,
则PC=
 
cm.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线x-2y+4=0经过椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的左顶点A和上顶点D,椭圆C的右顶点为B,点P是椭圆C上位于x轴上方的动点,直线AP,BP与直线l:x=5分别交于M,N两点.
(1)求椭圆C的方程;
(2)求线段MN的长度的最小值;
(3)当线段MN的长度最小时,Q点在椭圆上运动,记△BPQ的面积为S,当S在(0,+∞)上变化时,讨论S的大小与Q点的个数之间的关系.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线x+2y-4=0与
x=2-3cosθ
y=1+3sinθ
(θ为参数)相交于A、B两点,则|AB|=
6
6

查看答案和解析>>

科目:高中数学 来源: 题型:

选做题:(考生注意:请在下列三题中任选一题作答,如果多做,则按所做第一题评分)
A.(不等式选做题)不等式
x+5
(x-1)2
≥2
的解集是
[-
1
2
,1)∪(1,3]
[-
1
2
,1)∪(1,3]

B.(几何证明选做题) 如图,⊙O的直径AB=6cm,P是延长线上的一点,过点P作⊙O的切线,切点为C,连接AC,若∠CAP=30°,则PC=
3
3
3
3

C.(坐标系与参数方程选做题)已知直线x+2y-4=0与
x=2-3cosθ
y=1+3sinθ
(θ为参数)相交于A、B两点,则|AB|=
6
6

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线x+2y-4=0,则直线的斜率为__________,倾斜角为__________,在x轴、y轴上的截距分别为__________.

查看答案和解析>>

同步练习册答案