科目:高中数学 来源: 题型:
如图1,在直角梯形ABCD中,AD∥BC,AD⊥AB,AD=1,BC=2,E为CD上一点,且DE=1,EC=2,现沿BE折叠使平面BCE⊥平面ABED,F为BE的中点.图2所示.
(1)求证:AE⊥平面BCE;
(2)能否在边AB上找到一点P使平面ACE与平面PCF所成角的余弦值为
?若存在,试确定点P的位置,若不存在请说明理由.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
已知函数f(x)=log4(ax2+2x+3).
(1)若f(1)=1,求f(x)的单调区间;
(2)是否存在实数a,使f(x)的最小值为0?若存在,求出a的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
如图K73所示是二次函数y=ax2+bx+c的图像的一部分,图像过点A(-3,0),对称轴方程为x=-1.给出下面四个结论:①b2>4ac;②2a-b=1;③a-b+c=0;④5a<b.其中正确的结论是( )
![]()
图K73
A.②④ B.①④
C.②③ D.①③
查看答案和解析>>
科目:高中数学 来源: 题型:
设函数f(x)=|x+a|,g(x)=x-1,对于任意的x∈R,不等式f(x)≥g(x)恒成立,则实数a的取值范围是( )
A.(-∞,-1] B.(-∞,-1)
C.(-1,+∞) D.[-1,+∞)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com