精英家教网 > 高中数学 > 题目详情
(2013•许昌二模)如图,已知PE切圆O于点E,割线PBA交圆O于A,B两点,∠APE的平分线和AE、BE分别交于点C,D
(Ⅰ)求证:CE=DE;
(Ⅱ)求证:
CA
CE
=
PE
PB
分析:(Ⅰ)通过弦切角定理以及角的平分线,直接证明三角形是等腰三角形,即可证明CE=DE;
(Ⅱ)利用切割线定理以及角的平分线定理直接求证:
CA
CE
=
PE
PB
即可.
解答:证明:(Ⅰ)∵PE切圆O于E,∴∠PEB=∠A,
又∵PC平分∠APE,∴∠CPE=∠CPA,
∴∠PEB+∠CPE=∠A+∠CPA,
∴∠CDE=∠DCE,即CE=DE.
(Ⅱ)因为PC平分∠APE∴
CA
CE
=
PA
PE

又PE切圆O于点E,割线PBA交圆O于A,B两点,
∴PE2=PB•PA,
PA
PE
=
PE
PB

CA
CE
=
PE
PB
点评:本题考查圆的切割线定理,弦切角定理的应用,考查逻辑推理能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•许昌二模)函数f(x)=Asin(ωx+
π
6
)(ω>0)
的图象与x轴的交点的横坐标构成一个公差为
π
2
的等差数列,要得到函数g(x)=Acosωx的图象,只需将f(x)的图象(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•许昌二模)已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
2
2
,并且直线y=x+b是抛物线C2:y2=4x的一条切线.
(I)求椭圆C1的方程.
(Ⅱ)过点S(0,-
1
3
)
的动直线l交椭圆C1于A、B两点,试问:在直角坐标平面上是否存在一个定点T,使得以AB为直径的圆恒过定点T?若存在求出T的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•许昌二模)已知变量x,y满足约束条件
x+2y-3≤0
x+3y-3≥0
y-1≤0.
,若目标函数z=ax+y仅在点(3,0)处取到最大值,则实数a的取值范围为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•许昌二模)抛物线y=-4x2的焦点坐标是(  )

查看答案和解析>>

同步练习册答案