精英家教网 > 高中数学 > 题目详情
函数f(x)=sin(ωx+
π
6
)
的导函数y=f'(x)的部分图象如图所示:图象与y轴交点P(0,
3
3
2
)
,与x轴正半轴的交点为A、C,B为图象的最低点,则函数y=f'(x)在点C处的切线方程为
9x-y-4π=0
9x-y-4π=0

注:(f[g(x)])′=f′[g(x)]•g′(x)
分析:求出导函数,利用图象与y轴交点P(0,
3
3
2
)
,求得ω,从而可得函数的解析式,进而可得函数y=f'(x)在点C处的切线斜率,利用点斜式,可得切线方程.
解答:解:由题意,y=f′(x)=ωcos(ωx+
π
6
)

∵导函数图象与y轴交点P(0,
3
3
2
)

∴ωcos
π
6
=
3
3
2
,∴ω=3
∴y=f′(x)=3cos(3x+
π
6
)

令f′(x)=0,可得3x+
π
6
=
π
2
+kπ

x=
π
9
+
3
(k∈Z)
,从而k=1时,得C(
9
,0

又y′=-9sin(3x+
π
6
)

∴x=
9
时,y′=9
∴函数y=f'(x)在点C处的切线方程为y=9(x-
9
),即9x-y-4π=0.
故答案为:9x-y-4π=0.
点评:本题考查导数知识的运用,考查导数的几何意义,正确求出导函数是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=sin(ωx+
π
4
)(x∈R,ω>0)
的最小正周期为π,为了得到函数g(x)=cosωx的图象,只要将y=f(x)的图象(  )
A、向左平移
π
8
个单位长度
B、向右平移
π
8
个单位长度
C、向左平移
π
4
个单位长度
D、向右平移
π
4
个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin(ωx+
π
3
)
(ω>0)的最小正周期为π,将函数y=f(x)的图象向右平移m(m>0)个单位长度后,所得到的图象关于原点对称,则m的最小值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=sin(ωx+
π
6
)
的导函数y=f'(x)的部分图象如图所示:图象与y轴交点P(0,
3
3
2
)
,与x轴正半轴的两交点为A、C,B为图象的最低点,则S△ABC=
π
2
π
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•许昌一模)函数f(x)=sin(
π
4
+x)sin(
π
4
-x)
的最小正周期是
π
π

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•浙江模拟)在△ABC中,内角A、B、C的对边长分别为a、b、c,已知函数f(x)=sin(2x-
π
6
)
满足:对于任意x∈R,f(x)≤f(A))恒成立.
(1)求角A的大小;
(2)若a=
3
,求BC边上的中线AM长的取值范围.

查看答案和解析>>

同步练习册答案