精英家教网 > 高中数学 > 题目详情
(2008•奉贤区二模)已知椭圆的标准方程为
x2
4
+
y2
3
=1
,则该椭圆的焦距为
2
2
分析:直接从方程中解读出椭圆中基本参量的数值;然后通过椭圆中a、b、c之间的等量关系,即可解出c,进而得到2c,即该椭圆的焦距.
解答:解:依题意得,椭圆的长轴与x轴重合,则有a2=4,b2=3,
又∵在任意椭圆中有a2=b2+c2,从而c2=a2-b2=4-3=1(c>0),解得c=1.
则该椭圆的焦距即2c=2×1=2,
故答案为:2.
点评:这道题考查了椭圆中各个参量的意义以及在方程中相应的相关表示,以及椭圆中重要的基本关系a2=b2+c2
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2008•奉贤区二模)函数f(x)=cos2x的最小正周期为
π
π

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•奉贤区二模)已知数列{an}的前n项和为Sn,若Sn=2n-1,则a7=
64
64

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•奉贤区二模)函数f(x)=
x2+x-2
的定义域为
(-∞,-2]∪[1,+∞)
(-∞,-2]∪[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•奉贤区二模)函数f(x)=x(1-x),x∈(0,1)的最大值为
1
4
1
4

查看答案和解析>>

同步练习册答案