精英家教网 > 高中数学 > 题目详情

如图所示,已知直线FD和△ABC的BC边交于D,与AC边交于E,与BA的延长线交于F,且BD=DC,求证:AE·FB=EC·FA.

答案:
解析:

  证明:过A作AG∥BC,交DF于G点,

  因为AG∥BD,所以FA∶FB=AG∶BD.

  又因为BD=DC,所以FA∶FB=AG∶DC.

  因为AG∥BC,

  所以AG∶DC=AE∶EC.

  所以AE∶EC=FA∶FB,即AE·FB=EC·FA.

  分析:本题只要证AE∶EC=FA∶FB即可.

  由于AE∶EC与FA∶FB没有直接联系,因此必须寻找过渡比将它们联系起来,因此考虑添加平行线进行构造.


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图所示,已知直线l的斜率为k且过点Q(-3,0),抛物线C:y2=16x,直线与抛物线l有两个不同的交点,F是抛物线的焦点,点A(4,2)为抛物线内一定点,点P为抛物线上一动点.
(1)求|PA|+|PF|的最小值;
(2)求k的取值范围;
(3)若O为坐标原点,问是否存在点M,使过点M的动直线与抛物线交于B,C两点,且以BC为直径的圆恰过坐标原点,若存在,求出动点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:选修设计数学A4-1人教版 人教版 题型:047

如图所示,已知直线FD和△ABC的BC边交于D,与AC边交于E,与BA的延长线交于F,且BD=DC,求证:AE·FB=EC·FA.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,已知直线l的斜率为k且过点Q(-3,0),抛物线C:y2=16x,直线与抛物线l有两个不同的交点,F是抛物线的焦点,点A(4,2)为抛物线内一定点,点P为抛物线上一动点.
(1)求|PA|+|PF|的最小值;
(2)求k的取值范围;
(3)若O为坐标原点,问是否存在点M,使过点M的动直线与抛物线交于B,C两点,且以BC为直径的圆恰过坐标原点,若存在,求出动点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,已知点F的坐标为(0,1),直线l的方程为y+2=0,动点M到点F的距离比它到定直线l的距离小1,求动点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源:2011年浙江省杭州市长河高中高三市二测(第六次测试)数学试卷(文科)(解析版) 题型:解答题

如图所示,已知直线l的斜率为k且过点Q(-3,0),抛物线C:y2=16x,直线与抛物线l有两个不同的交点,F是抛物线的焦点,点A(4,2)为抛物线内一定点,点P为抛物线上一动点.
(1)求|PA|+|PF|的最小值;
(2)求k的取值范围;
(3)若O为坐标原点,问是否存在点M,使过点M的动直线与抛物线交于B,C两点,且以BC为直径的圆恰过坐标原点,若存在,求出动点M的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案