精英家教网 > 高中数学 > 题目详情

 

  如图7,椭圆的离心率为轴被曲线 截得的线段长等于的长半轴长。

(Ⅰ)求的方程;

(Ⅱ)设轴的交点为M,过坐标原点O的直线相交于点A,B,直线MA,MB分别与相交与D,E.

(i)证明:

(ii)记△MAB,△MDE的面积分别是.问:是否存在直线,使得=?

请说明理由。

 

 

 

【答案】

 解析:(I)由题意知,从而,又,解得

的方程分别为

(II)(i)由题意知,直线的斜率存在,设为,则直线的方程为.

,则是上述方程的两个实根,于是

又点的坐标为,所以

,即

(ii)设直线的斜率为,则直线的方程为,由解得,则点的坐标为

又直线的斜率为 ,同理可得点B的坐标为.

于是

解得,则点的坐标为

又直线的斜率为,同理可得点的坐标

于是

因此

由题意知,解得

又由点的坐标可知,,所以

故满足条件的直线存在,且有两条,其方程分别为

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在平面直角坐标系xoy中,A1,A2,B1,B2为椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的四个顶点,F为其右焦点,直线A1B2与直线B1F相交于点T,线段OT与椭圆的交点M恰为线段OT的中点,则该椭圆的离心率为(  )
A、2
7
-5
B、
2
7
+1
9
C、
7
-
5
2
D、
2
7
-1
9

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分13分)

如图7,椭圆的离心率为,x轴被曲线 截得的线段长等于C1的长半轴长。

(Ⅰ)求C1,C2的方程;

(Ⅱ)设C2与y轴的焦点为M,过坐标原点O的直线与C2相交于点A,B,直线MA,MB分别与C1相交与D,E.

(i)证明:MD⊥ME;

(ii)记△MAB,△MDE的面积分别是.问:是否存在直线l,使得?请说明理

由。

查看答案和解析>>

科目:高中数学 来源: 题型:

如图7,椭圆的离心率为,x轴被曲线 截得的线段长等于的长半轴长。

(Ⅰ)求的方程;

(Ⅱ)设与y轴的焦点为M,过坐标原点O的直线与相交于点A,B,直线MA,MB分别与相交与D,E.

(i)证明:MD⊥ME;

(ii)记△MAB,△MDE的面积分别是,.问:是否存在直线l,使得=?

请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

如图7,椭圆的离心率为,x轴被曲线 截得的线段长等于的长半轴长。

(Ⅰ)求的方程;

(Ⅱ)设与y轴的焦点为M,过坐标原点O的直线与相交于点A,B,直线MA,MB分别与相交与D,E.

(i)证明:MD⊥ME;

(ii)记△MAB,△MDE的面积分别是,.问:是否存在直线l,使得=?

请说明理由。

查看答案和解析>>

同步练习册答案