【题目】在
中,
,
.已知
分别是
的中点.将
沿
折起,使
到
的位置且二面角
的大小是60°,连接
,如图:
![]()
(1)证明:平面
平面![]()
(2)求平面
与平面
所成二面角的大小.
【答案】(1)证明见解析(2)45°
【解析】
(1)设
的中点为
,连接
,设
的中点为
,连接
,
,从而
即为二面角
的平面角,
,推导出
,从而
平面
,则
,即
,进而
平面
,推导四边形
为平行四边形,从而
,
平面
,由此即可得证.
(2)以B为原点,在平面
中过B作BE的垂线为x轴,BE为y轴,BA为z轴建立空间直角坐标系,利用向量法求出平面
与平面
所成二面角的大小.
(1)∵
是
的中点,∴
.
设
的中点为
,连接
.
设
的中点为
,连接
,
.
易证:
,
,
∴
即为二面角
的平面角.
∴
,而
为
的中点.
易知
,∴
为等边三角形,∴
.①
∵
,
,
,∴
平面
.
而
,∴
平面
,∴
,即
.②
由①②,
,∴
平面
.
∵
分别为
的中点.
∴四边形
为平行四边形.
∴
,
平面
,又
平面
.
∴平面
平面
.
![]()
(2)如图,建立空间直角坐标系,设
.
则
,
,
,
,![]()
显然平面
的法向量
,
设平面
的法向量为
,
,
,
∴
,∴
.
,
由图形观察可知,平面
与平面
所成的二面角的平面角为锐角.
∴平面
与平面
所成的二面角大小为45°.
![]()
科目:高中数学 来源: 题型:
【题目】在直角坐标系.xOy中,曲线C1的参数方程为
(
为参数),以原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=4sinθ.
(1)求曲线C1的普通方程和C2的直角坐标方程;
(2)已知曲线C2的极坐标方程为
,点A是曲线C3与C1的交点,点B是曲线C3与C2的交点,且A,B均异于原点O,且|AB|=4
,求α的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了提高学生的身体素质,某校高一、高二两个年级共336名学生同时参与了“我运动,我健康,我快乐”的跳绳、踢毽等系列体育健身活动.为了了解学生的运动状况,采用分层抽样的方法从高一、高二两个年级的学生中分别抽取7名和5名学生进行测试.下表是高二年级的5名学生的测试数据(单位:个/分钟):
![]()
(1)求高一、高二两个年级各有多少人?
(2)设某学生跳绳
个/分钟,踢毽
个/分钟.当
,且
时,称该学生为“运动达人”.
①从高二年级的学生中任选一人,试估计该学生为“运动达人”的概率;
②从高二年级抽出的上述5名学生中,随机抽取3人,求抽取的3名学生中为“运动达人”的人数
的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市政府为了引导居民合理用水,决定全面实施阶梯水价,居民用水原则上以住宅为单位(一套住宅为一户).
阶梯级别 | 第一阶梯 | 第二阶梯 | 第三阶梯 |
月用水范围(吨) |
|
|
|
为了了解全市居民月用水量的分布情况,通过抽样,获得了
户居民的月用水量(单位:吨),得到统计表如下:
居民用水户编号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
用水量(吨) | 7 | 8 | 8 | 9 | 10 | 11 | <>13 | 14 | 15 | 20 |
(1)若用水量不超过
吨时,按
元/吨计算水费;若用水量超过
吨且不超过
吨时,超过
吨部分按
元/吨计算水费;若用水量超过
吨时,超过
吨部分按
元/吨计算水费.试计算:若某居民用水
吨,则应交水费多少元?
(2)现要在这
户家庭中任意选取
户,求取到第二阶梯水量的户数的分布列与期望;
(3)用抽到的
户家庭作为样本估计全市的居民用水情况,从全市依次随机抽取
户,若抽到
户月用水量为第一阶梯的可能性最大,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的离心率为
,以原点为圆心,椭圆
的短半轴长为半径的圆与直线
相切.
(Ⅰ)求椭圆方程;
(Ⅱ)设
为椭圆右顶点,过椭圆
的右焦点的直线
与椭圆
交于
,
两点(异于
),直线
,
分别交直线
于
,
两点. 求证:
,
两点的纵坐标之积为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知非零实数
,
,
不全相等,则下列说法正确的个数是( )
(1)如果
,
,
成等差数列,则
,
,
能构成等差数列
(2)如果
,
,
成等差数列,则
,
,
不可能构成等比数列
(3)如果
,
,
成等比数列,则
,
,
能构成等比数列
(4)如果
,
,
成等比数列,则
,
,
不可能构成等差数列
A.1个B.2个C.3个D.4个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点
在圆
:
上运动,点
在
轴上的投影为
,动点
满足
.
(1)求动点
的轨迹
的方程;
(2)过点
的动直线
与曲线
交于
、
两点,问:在
轴上是否存在定点
使得
的值为定值?若存在,求出定点
的坐标及该定值;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com