精英家教网 > 高中数学 > 题目详情

【题目】中,.已知分别是的中点.沿折起,使的位置且二面角的大小是60°,连接,如图:

1)证明:平面平面

2)求平面与平面所成二面角的大小.

【答案】1)证明见解析(245°

【解析】

1)设的中点为,连接,设的中点为,连接,从而即为二面角的平面角,,推导出,从而平面,则,即,进而平面,推导四边形为平行四边形,从而平面,由此即可得证.

2)以B为原点,在平面中过BBE的垂线为x轴,BEy轴,BAz轴建立空间直角坐标系,利用向量法求出平面与平面所成二面角的大小.

1)∵的中点,∴.

的中点为,连接.

的中点为,连接.

易证:

即为二面角的平面角.

,而的中点.

易知,∴为等边三角形,∴.

,∴平面.

,∴平面,∴,即.

由①②,,∴平面.

分别为的中点.

∴四边形为平行四边形.

平面,又平面.

∴平面平面.

2)如图,建立空间直角坐标系,设.

显然平面的法向量

设平面的法向量为

,∴.

由图形观察可知,平面与平面所成的二面角的平面角为锐角.

∴平面与平面所成的二面角大小为45°.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在直角坐标系.xOy中,曲线C1的参数方程为 为参数),以原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=4sinθ.

1)求曲线C1的普通方程和C2的直角坐标方程;

2)已知曲线C2的极坐标方程为,点A是曲线C3C1的交点,点B是曲线C3C2的交点,且AB均异于原点O,且|AB|=4,求α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)求函数的单调区间;

2)若关于的不等式上恒成立,且,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了提高学生的身体素质,某校高一、高二两个年级共336名学生同时参与了我运动,我健康,我快乐的跳绳、踢毽等系列体育健身活动.为了了解学生的运动状况,采用分层抽样的方法从高一、高二两个年级的学生中分别抽取7名和5名学生进行测试.下表是高二年级的5名学生的测试数据(单位:个/分钟):

1)求高一、高二两个年级各有多少人?

2)设某学生跳绳/分钟,踢毽/分钟.,且时,称该学生为运动达人”.

①从高二年级的学生中任选一人,试估计该学生为运动达人的概率;

②从高二年级抽出的上述5名学生中,随机抽取3人,求抽取的3名学生中为运动达人的人数的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市政府为了引导居民合理用水,决定全面实施阶梯水价,居民用水原则上以住宅为单位(一套住宅为一户).

阶梯级别

第一阶梯

第二阶梯

第三阶梯

月用水范围(吨)

为了了解全市居民月用水量的分布情况,通过抽样,获得了户居民的月用水量(单位:吨),得到统计表如下:

居民用水户编号

1

2

3

4

5

6

7

8

9

10

用水量(吨)

7

8

8

9

10

11

<>13

14

15

20

1)若用水量不超过吨时,按/吨计算水费;若用水量超过吨且不超过吨时,超过吨部分按/吨计算水费;若用水量超过吨时,超过吨部分按/吨计算水费.试计算:若某居民用水吨,则应交水费多少元?

2)现要在这户家庭中任意选取户,求取到第二阶梯水量的户数的分布列与期望;

3)用抽到的户家庭作为样本估计全市的居民用水情况,从全市依次随机抽取户,若抽到户月用水量为第一阶梯的可能性最大,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线相切.

(Ⅰ)求椭圆方程;

(Ⅱ)设为椭圆右顶点,过椭圆的右焦点的直线与椭圆交于两点(异于),直线分别交直线两点. 求证:两点的纵坐标之积为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知非零实数不全相等,则下列说法正确的个数是(

1)如果成等差数列,则能构成等差数列

2)如果成等差数列,则不可能构成等比数列

3)如果成等比数列,则能构成等比数列

4)如果成等比数列,则不可能构成等差数列

A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)求曲线在点处的切线方程;

2)求的单调区间;

3)若对于任意,都有,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点在圆上运动,点轴上的投影为,动点满足

1)求动点的轨迹的方程;

2)过点的动直线与曲线交于两点,问:在轴上是否存在定点使得的值为定值?若存在,求出定点的坐标及该定值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案