如图所示,PA⊥平面ABCD,ABCD是矩形,AB=1,
,点F是PB的中点,点E在边BC上移动.![]()
(1)若
,求证:
;
(2)若二面角
的大小为
,则CE为何值时,三棱锥
的体积为
.
科目:高中数学 来源: 题型:解答题
(2014·贵阳模拟)一个几何体是由圆柱ADD1A1和三棱锥E-ABC组合而成,点A,B,C在圆O的圆周上,其正(主)视图,侧(左)视图的面积分别为10和12,如图所示,其中EA⊥平面ABC,AB⊥AC,AB=AC.AE=2.![]()
(1)求证:AC⊥BD.
(2)求三棱锥E-BCD的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在四棱锥P-ABCD中,PD⊥平面ABCD,四边形ABCD是菱形,AC=6,BD=8,E是PB上任意一点,△AEC面积的最小值是3.![]()
(1)求证:AC⊥DE;
(2)求四棱锥P-ABCD的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,直三棱柱
中,
,
,
是
的中点,△
是等腰三角形,
为
的中点,
为
上一点.![]()
(1)若
∥平面
,求
;
(2)平面
将三棱柱
分成两个部分,求较小部分与较大部分的体积之比.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,直三棱柱ABC-A1B1C1中,D、E分别是AB、BB1的中点.
(1)证明:BC1//平面A1CD;
(2)设AA1=AC=CB=2,AB=
,求三棱锥C一A1DE的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图1,在直角梯形
中,
,
.把
沿
折起到
的位置,使得
点在平面
上的正投影
恰好落在线段
上,如图2所示,点
分别为棱
的中点.![]()
(1)求证:平面
平面
;
(2)求证:
平面
;
(3)若
,求四棱锥
的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图甲,⊙O的直径AB=2,圆上两点C、D在直径AB的两侧,且∠CAB=
,∠DAB=
.沿直径AB折起,使两个半圆所在的平面互相垂直(如图乙),F为BC的中点,E为AO的中点.根据图乙解答下列各题:
(1)求三棱锥C-BOD的体积;
(2)求证:CB⊥DE;
(3)在
上是否存在一点G,使得FG∥平面ACD?若存在,试确定点G的位置;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com