4£®ÒÑÖª¼¯ºÏMÊÇÂú×ãÏÂÁÐÐÔÖʵĺ¯Êýf£¨x£©µÄÈ«Ì壬´æÔÚʵÊýa¡¢k£¨k¡Ù0£©£¬¶ÔÓÚ¶¨ÒåÓòÄÚµÄÈÎÒâx¾ùÓÐf£¨a+x£©=kf£¨a-x£©³ÉÁ¢£¬³ÆÊý¶Ô£¨a£¬k£©Îªº¯Êýf£¨x£©µÄ¡°°éËæÊý¶Ô¡±
£¨1£©ÅжÏf£¨x£©=x2ÊÇ·ñÊôÓÚ¼¯ºÏM£¬²¢ËµÃ÷ÀíÓÉ£»
£¨2£©Èôº¯Êýf£¨x£©=sinx¡ÊM£¬ÇóÂú×ãÌõ¼þµÄº¯Êýf£¨x£©µÄËùÓС°°éËæÊý¶Ô¡±£»
£¨3£©Èô£¨1£¬1£©£¬£¨2£¬-1£©¶¼ÊǺ¯Êýf£¨x£©µÄ¡°°éËæÊý¶Ô¡±£¬µ±1¡Üx£¼2ʱ£¬$f£¨x£©=cos£¨{\frac{¦Ð}{2}x}£©$£»µ±x=2ʱ£¬f£¨x£©=0£®Çóµ±2014¡Üx¡Ü2016ʱ£¬º¯Êýy=f£¨x£©µÄÁãµã£®

·ÖÎö £¨1£©ÓÉÌâÒâ¿ÉµÃ£¨a+x£©2=k£¨a-x£©2£¬»¯Îª£¨1-k£©x2+2a£¨1+k£©x+£¨1-k£©a2=0¶Ôx¡ÊR³ÉÁ¢£¬
ÐèÂú×ãÌõ¼þ$\left\{\begin{array}{l}{1-k=0}\\{2a£¨1+k£©=0}\\{£¨1-k£©{a}^{2}=0}\end{array}\right.$£¬½â·½³Ì¼´¿ÉÅжϣ»
£¨2£©Ó´ÌâÒâ¿ÉµÃsin£¨a+x£©=ksin£¨a-x£©£¬ÔËÓÃÁ½½ÇºÍ²î¹«Ê½£¬»¯¼ò½áºÏÓàÏÒº¯ÊýµÄÖµÓò¼´¿ÉµÃµ½ËùÇóÊý¶Ô£»
£¨3£©ÓÉ£¨1£¬1£©ºÍ£¨2£¬-1£©¶¼ÊǺ¯Êýf£¨x£©µÄ¡°°éËæÊý¶Ô¡±£¬ËùÒÔf£¨1+x£©=f£¨1-x£©ÇÒf£¨2+x£©=-f£¨2-x£©£¬¿ÉµÃf£¨x£©ÎªÖÜÆÚΪ4µÄº¯Êý£¬ÇóµÃ0£¼x£¼1£¬1£¼x£¼2£¬2£¼x£¼3£¬3£¼x£¼4£¬x=0£¬1£¬2£¬3£¬4µÄº¯Êý½âÎöʽ£¬¿ÉµÃ2014£¼x£¼2015£¬2015£¼x£¼2016£¬x=2014£¬2015£¬2016µÄ½âÎöʽ£¬¼´¿ÉµÃµ½ËùÇóÁãµã£®

½â´ð ½â£º£¨1£©ÓÉf£¨x£©=x2¼°f£¨a+x£©=kf£¨a-x£©£¬¿ÉµÃ
£¨a+x£©2=k£¨a-x£©2£¬¼´Îª£¨1-k£©x2+2a£¨1+k£©x+£¨1-k£©a2=0¶Ôx¡ÊR³ÉÁ¢£¬
ÐèÂú×ãÌõ¼þ$\left\{\begin{array}{l}{1-k=0}\\{2a£¨1+k£©=0}\\{£¨1-k£©{a}^{2}=0}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{a=0}\\{k=1}\end{array}\right.$£¬¹Êk=1¡Ù0£¬a´æÔÚ£¬
ËùÒÔf£¨x£©=x2¡ÊM£®
£¨2£©ÓÉf£¨x£©=sinx¡ÊMµÃ£ºsin£¨a+x£©=ksin£¨a-x£©£¬
sinacosx+cosasinx=k£¨sinacosx-cosasinx£©£¬
ËùÒÔ£¨1+k£©cosasinx+£¨1-k£©sinacosx=0£¬
$\sqrt{{k}^{2}+2kcos2a+1}$sin£¨x+¦Õ£©=0¶ÔÈÎÒâµÄx¡ÊR¶¼³ÉÁ¢£¬Ö»ÓÐk2+2kcos2a+1=0£¬
¼´cos2a=-$\frac{1}{2}$£¨k+$\frac{1}{k}$£©£¬ÓÉÓÚ|k+$\frac{1}{k}$|¡Ý2£¨µ±ÇÒ½öµ±k=¡À1ʱ£¬µÈºÅ³ÉÁ¢£©£¬
ËùÒÔ|cos2a|¡Ý1£¬ÓÖÒòΪ|cos2a|¡Ü1£¬¹Ê|cos2a|=1£®
ÆäÖÐk=1ʱ£¬cos2a=-1£¬a=n¦Ð+$\frac{¦Ð}{2}$£¬n¡ÊZ£»
k=-1ʱ£¬cos2a=1£¬a=n¦Ð£¬n¡ÊZ£®
¹Êº¯Êýf£¨x£©µÄ¡°°éËæÊý¶Ô¡±Îª£¨n¦Ð+$\frac{¦Ð}{2}$£¬1£©ºÍ£¨n¦Ð£¬-1£©£¬n¡ÊZ£®
£¨3£©ÒòΪ£¨1£¬1£©ºÍ£¨2£¬-1£©¶¼ÊǺ¯Êýf£¨x£©µÄ¡°°éËæÊý¶Ô¡±£¬
ËùÒÔf£¨1+x£©=f£¨1-x£©ÇÒf£¨2+x£©=-f£¨2-x£©£¬ÓÚÊÇf£¨x+4£©=f£¨x£©£¬
¹Êº¯Êýf£¨x£©ÊÇÒÔ4ΪÖÜÆÚµÄº¯Êý£®
Èô0£¼x£¼1£¬Ôò1£¼2-x£¼2£¬´Ëʱf£¨x£©=f£¨2-x£©=-cos£¨$\frac{¦Ð}{2}$x£©£¬
Èô2£¼x£¼3£¬Ôò1£¼4-x£¼2£¬´Ëʱf£¨x£©=-f£¨4-x£©=-cos£¨$\frac{¦Ð}{2}$x£©£¬
Èô3£¼x£¼4£¬Ôò0£¼4-x£¼1£¬´Ëʱf£¨x£©=-f£¨4-x£©=cos£¨$\frac{¦Ð}{2}$x£©£¬
f£¨x£©=$\left\{\begin{array}{l}{-cos£¨\frac{¦Ð}{2}x£©£¬0£¼x£¼1}\\{cos£¨\frac{¦Ð}{2}x£©£¬1£¼x£¼2}\\{-cos£¨\frac{¦Ð}{2}x£©£¬2£¼x£¼3}\\{cos£¨\frac{¦Ð}{2}x£©£¬3£¼x£¼4}\\{0£¬x=0£¬1£¬2£¬3£¬4}\end{array}\right.$¹Êf£¨x£©=$\left\{\begin{array}{l}{-cos£¨\frac{¦Ð}{2}x£©£¬2014£¼x£¼2015}\\{cos£¨\frac{¦Ð}{2}x£©£¬2015£¼x£¼2016}\\{0£¬x=2014£¬2015£¬2016}\end{array}\right.$
µ±2014¡Üx¡Ü2016ʱ£¬º¯Êýf£¨x£©µÄÁãµã·Ö±ðΪ2014£¬2015£¬2016£®

µãÆÀ ±¾Ì⿼²éж¨ÒåµÄÀí½âºÍÔËÓ㬿¼²éº¯ÊýµÄÐÔÖʺÍÔËÓã¬Ö÷Òª¿¼²éº¯ÊýµÄÖÜÆÚÐԺͺ¯ÊýµÄ½âÎöʽµÄÇ󷨣¬º¯ÊýµÄÁãµãµÄÇ󷨣¬¿¼²éÔËËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®ÔÚ15È˵ÄÊýѧÐËȤС×éÖУ¬ÓÐ5ÃûÈýºÃѧÉú£¬ÏÖ´ÓÖÐÈÎÒâÑ¡8È˲μӡ°Ï£Íû±­¡±Êýѧ¾ºÈü£¬ÇóÒ»¶¨ÓÐÈýºÃѧÉú²Î¼ÓµÄ¸ÅÂÊ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®ÒÑÖªÊýÁÐ{an}Âú×ãa1+$\frac{{a}_{2}}{2}$+$\frac{{a}_{3}}{3}$+¡­+$\frac{{a}_{n}}{n}$=a2n-1£¬ÇóÊýÁÐ{an}µÄͨÏʽ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®ÈçͼËùʾ£¬ÔÚ²àÀâ´¹Ö±ÓÚµ×ÃæµÄËÄÀâÖùABCD-A1B1C1D1ÖУ¬AD¡ÎBC£¬AD¡ÍAB£¬AB=$\sqrt{2}$£¬AD=2£¬BC=4£¬AA1=2£¬E¡¢F·Ö±ðÊÇDD1£¬AA1µÄÖе㣮
£¨I£©Ö¤Ã÷£ºEF¡ÎÆ½ÃæB1C1CB£»
£¨¢ò£©Ö¤Ã÷£ºÆ½ÃæA1BC1¡ÍÆ½ÃæB1C1EF£»
£¨¢ó£©ÇóBC1ÓëÆ½ÃæB1C1EFËù³ÉµÄ½ÇµÄÕýÏÒÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

19£®Èçͼ£¬ÔÚ³¤·½ÌåABCD-A1B1C1D1ÖУ¬ÒÑÖªA1A=1£¬AD=1£¬AB=$\sqrt{2}$£¬ÔòÌå¶Ô½ÇÏßAC1ÓëÆ½ÃæABCDËù³É½ÇµÄ´óСΪ30¡ã£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®ÒÑ֪ȫ¼¯U={0£¬1£¬2£¬3£¬4}£¬M={2£¬3£¬4}£¬N={0£¬1£¬2£¬3}£¬ÔòͼÖÐÒõÓ°²¿·ÖËù±íʾµÄ¼¯ºÏΪ£¨¡¡¡¡£©
A£®{2£¬3}B£®{0£¬1£¬2}C£®{1£¬2£¬3}D£®{0£¬1}

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®Èçͼ£¬ÔÚÈýÀâ×¶S-ABCÖУ¬¡ÏABC=90¡ã£¬SA¡ÍÆ½ÃæABC£¬µãAÔÚSBºÍSCÉϵÄÉäÓ°·Ö±ðΪE¡¢D£®
£¨1£©ÇóÖ¤£ºDE¡ÍSC£»
£¨2£©ÈôSA=AB=BC=1£¬ÇóÖ±ÏßADÓëÆ½ÃæABCËù³É½ÇµÄÓàÏÒÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®£¨ÆÕͨÖÐѧ×ö£©ÒÑÖªÊýÁÐ{an}ΪµÈ²îÊýÁУ¬a3=3£¬a7=7£¬ÊýÁÐ{bn}µÄǰnÏîºÍΪSn£¬ÇÒSn=2bn-2
£¨1£©Çó{an}¡¢{bn}µÄͨÏʽ
£¨2£©Èôcn=$\frac{{a}_{n}}{{b}_{n}}$£¬ÊýÁÐ{cn}µÄǰnÏîºÍΪTn£¬ÇóTn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

14£®ÈôÖ±Ïß¹ýµãA£¨1£¬2£©£¬B£¨3£¬6£©£¬Ôò¸ÃÖ±ÏßµÄбÂÊΪ2£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸