精英家教网 > 高中数学 > 题目详情
11.已知函数$f(x)=\frac{4x}{{3{x^2}+3}}$,函数$g(x)=\frac{1}{3}a{x^3}-{a^2}x(a≠0)$,若对任意x1∈[0,2],总存在x2∈[0,2],使f(x1)=g(x2),则实数a的取值范围是(  )
A.(0,+∞)B.$[\frac{1}{3},1]$C.$[\frac{1}{3},+∞)$D.(0,1]

分析 求出函数$f(x)=\frac{4x}{{3{x^2}+3}}$,在[0,2]上的值域为[b,c],再求导g′(x)=ax2-a2,从而确定函数的单调性,从而化为最值问题.

解答 解:根据所给条件,函数$f(x)=\frac{4x}{{3{x^2}+3}}$,在[0,2]上的值域[b,c],
$f(x)=\frac{4x}{3{x}^{2}+3}=\frac{4}{3x+\frac{3}{x}}$≤$\frac{4}{2\sqrt{3x•\frac{3}{x}}}$=$\frac{2}{3}$,当且仅当x=1时取等号;x=0时,f(0)=0,x=2时,f(2)=$\frac{8}{15}$
则有b=0且c=$\frac{2}{3}$;函数的值域为:[0,$\frac{2}{3}$].则y=g(x)的值域包含[0,$\frac{2}{3}$]
函数$g(x)=\frac{1}{3}a{x^3}-{a^2}x(a≠0)$,
则g′(x)=ax2-a2=0,a>0时,解得x=$\sqrt{a}$.
当4>a>0时,g′(x)>0,∴$\sqrt{a}$<x≤2;g′(x)<0,∴0≤x<$\sqrt{a}$
∴g(x)在[0,$\sqrt{a}$)上单调递减,在($\sqrt{a}$,2]上单调递增
显然g($\sqrt{a}$)<g(0)=0
由题意可知,g(2)≥$\frac{2}{3}$,即3a2-4a+1≤0,∴$\frac{1}{3}$≤a≤1,
当a≥4时,g′(x)≤0,∴g(x)在[0,2]上单调递减,g(x)≤g(0),不合题意.
当a≤0时,x∈[0,2],$g(x)=\frac{1}{3}a{x}^{3}-{a}^{2}x≤0$,不满足y=g(x)的值域包含[0,$\frac{2}{3}$].
综上,$\frac{1}{3}$≤a≤1.

点评 本题考查了导数的综合应用及函数的性质应用,同时考查了恒成立问题,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.在△ABC中,A点的坐标为(0,3),BC边的长为2,且BC在x轴上的区间[-3,3]上滑动.
(1)求△ABC的外心P的轨迹方程;
(2)设直线l:y=$\frac{1}{3}$x+b与P的轨迹交于E、F点,原点O到直线l的距离为d,求$\frac{|EF|}{d}$的最大值,并求此时b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知双曲线的中心在原点,对称轴为坐标轴,一条渐近线为$y=\sqrt{3}x$,右焦点F(4,0),左右顶点分别为A1,A2,P为双曲线上一点(不同于A1,A2),直线A1P,A2P分别与直线x=1交于M,N两点;
(1)求双曲线的方程;
(2)求证:$\overrightarrow{FM}•\overrightarrow{FN}$为定值,并求此定值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.偶函数y=f(x)满足下列条件①x≥0时,f(x)=x3;②对任意x∈[t,t+1],不等式f(x+t)≥8f(x)恒成立,则实数t的取值范围是(  )
A.(-∞,-$\frac{3}{4}$]B.[-$\frac{3}{4},0$]C.[-2,$\frac{3}{4}$]D.[-$\frac{4}{3},1$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.$f(x)=\frac{{{3^{2x}}+1}}{{{3^{2x}}-1}}$.
(1)判断f(x)的奇偶性;
(2)判断并证明函数f(x)在(-∞,0)上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知函数f(x)=$lo{g}_{\frac{1}{2}}(3+2x-{x}^{2})$,则f(x)的值域是[-2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.给出下列关于互不相同的直线m,n,l和平面α,β的四个命题,其中正确命题的个数是(  )
(1)m?α,l∩α=A,点A∉m,则l与m不共面;
(2)l,m是异面直线,l∥α,m∥α,且n⊥l,n⊥m,则n⊥α;
(3)若l∥α,m∥β,α∥β,则l∥m;
(4)若l?α,m?α,l∩m=A,l∥β,m∥β,则α∥β,
(5)若l⊥α,l⊥n,则n∥α
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若偶函数y=f(x),x∈R,满足f(x+2)=-f(x),且x∈[0,2]时,f(x)=3-x2,则方程f(x)=sin|x|在[-10,10]内的根的个数为(  )
A.12B.10C.9D.8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.计算:log525+lg$\frac{1}{100}+ln\sqrt{e}+{2^{{{log}_2}1}}$=$\frac{3}{2}$.

查看答案和解析>>

同步练习册答案