精英家教网 > 高中数学 > 题目详情
已知数列{an),其中a2=6,
an+1+an-1
an+1-an+1
=n
(1)求a1、a3、a4
(2)求数列{an}通项公式;
(3)设数列{bn}为等差数列,其中bn=
an
n+c
(c为不为零的常数),若Sn=b1+b2+…+bn,求
1
S1
+
1
S2
+…+
1
Sn
分析:(1)在
an+1+an-1
an+1-an+1
=n中,分别令n=2,3,4得出关于a1、a3、a4;的方程计算求解即可.
(2)猜想an=n(2n-1),再用数学归纳法证明
(3)由(2)利用2b2=b1+b3.求出c,继而得出bn,Sn,再利用裂项求和法得出结果.
解答:解:(1)a2=6,
a2+a1-1
a2-a1+1
=1,
a3+a2-1
a3-a2+1
=2,
a4+a3-1
a4-a3+1
=3
得a1=1,a3=15,a4=28
(2)猜想an=n(2n-1),下面用数学归纳法证明
①当n=1时,由已知,显然成立.
②假设当n=k(k≥1)时成立,即ak=k(2k-1)
则当n=k+1时,有
ak+1+ak-1
ak+1-ak+1
=k.所以(k-1)a k+1=(k+1)a k-k(k+1),
a k+1=(k+1)[2(k+1)-1]
即当n=k+1时也成立.所以an=n(2n-1)成立
(3)因为{bn}为等差数列,所以2b2=b1+b3
2a2
2+c
=
a1
1+c
+
a3
3+c
,又a1=1,a2=6,a3=15,
c=-
1
2
,∴bn=
an
n-
1
2
=
n(2n-1) 
1
2
(2n-1)
=2n.
故Sn=b1+b2+…+bn,=n(n+1)
1
S1
+
1
S2
+…+
1
Sn
=[
1
1×2
+
1
2×3
+…+
1
n(n+1)
]
=(1-
1
2
)+(
1
2
-
1
3
)+…+(
1
n
-
1
n+1
)=1-
1
n+1
=
n
n+1
点评:本题考查数列递推公式与通项公式,数列前n项和求解,考查数学归纳法的数学功用.考查推理论证,运算求解能力与求和方法..
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}中,其前n项和为Sn,满足Sn=2an-1,n∈N*,数列{bn}满足bn=1-log
12
an,n∈N*

(1)求数列{an}、{bn}的通项公式;
(2)设数列{anbn}的n项和为Tn,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an},定义其倒均数是Vn=
1
a1
+
1
a2
+…+
1
an
n
,n∈N*
,若数列{an}的倒均数是Vn=
n+1
2
,则数列{an}的通项公式an=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an},定义其倒均数是Vn=
1
a1
+
1
a2
+…+
1
an
n
,n∈N*

(1)求数列{an}的倒均数是Vn=
n+1
2
,求数列{an}的通项公式an
(2)设等比数列{bn}的首项为-1,公比为q=
1
2
,其倒数均为Vn,若存在正整数k,使n≥k时,Vn<-16恒成立,试求k的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,其前n项和为Sn,且n,an,Sn成等差数列(n∈N*).
(1)求数列{an}的通项公式;
(2)求Sn>57时n的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•安徽模拟)已知数列{an},定义其倒均数是Vn=
1
a1
+
1
a2
+…+
1
an
n
,n∈N*

(1)若数列{an}倒均数是Vn=
n+2
2
,求an

(2)若等比数列{bn}的公比q=2,其倒均数为Vn,问是否存在正整数m,使得当n≥m(n∈N*)时,nVn
15
8b1
恒成立,若存在,求出m的最小值;若不存在,说明理由.

查看答案和解析>>

同步练习册答案