如图,在长方体中,点在线段上.
(Ⅰ)求异面直线与所成的角;
(Ⅱ)若二面角的大小为,求点到平面的距离.
解析:本题涉及立体几何线面关系的有关知识, 本题实质上求角度和距离,在求此类问题中,要将这些量归结到三角形中,最好是直角三角形,这样有利于问题的解决,此外用向量也是一种比较好的方法.
答案:解法一:(Ⅰ)连结。由已知,是正方形,有。
∵平面,∴是在平面内的射影。
根据三垂线定理,得,则异面直线与所成的角为。
作,垂足为,连结,则
所以为二面角的平面角,.
于是
易得,所以,又,所以。
设点到平面的距离为.
∵即,
∴,即,∴.
故点到平面的距离为。
解法二:分别以为轴、轴、轴,建立空间直角坐标系.
(Ⅰ)由,得
设,又,则。
∵∴
则异面直线与所成的角为。
(Ⅱ)为面的法向量,设为面的法向量,则
∴. ①
由,得,则,即
∴ ②
由①、②,可取
又,所以点到平面的距离
。
科目:高中数学 来源: 题型:
如图,在长方体中,点分别在上,且,.
(1)求证:平面;
(2)若规定两个平面所成的角是这两个平面所组成的二面角中的锐角(或直角),则在空间有定理:若两条直线分别垂直于两个平面,则这两条直线所成的角与这两个平面所成角相等,试根据上述定理,在时,求平面与平面所成角的大小.
查看答案和解析>>
科目:高中数学 来源:2010-2011学年湖南省高三第一次质检文科数学卷 题型:解答题
(12分)如图,在长方体中,点在棱的延长线上,且.
(Ⅰ)求证://平面 ;
(Ⅱ)求证:平面平面;
查看答案和解析>>
科目:高中数学 来源:福建省2010届高三高考模拟试卷文科数学 题型:解答题
(本小题12分)如图,在长方体中,点在棱的延长线上,且.
(1)求证:∥平面;
(2)求证:平面平面;
(3)求四面体的体积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com