精英家教网 > 高中数学 > 题目详情

(本小题满分12分)设直线与椭圆相交于两个不同的点,与轴相交于点,记为坐标原点.
(1)证明:
(2)若的面积及椭圆方程.

(1)根据直线与椭圆联立,结合判别式大于零来得到关系式。
(2)

解析试题分析:(1)证明:由 代入消去
  ① ………………………… 2分
由直线l与椭圆相交于两个不同的点得
整理得,即 ……4分
(2)解:设①为

而点, ∴
代入上式,得 ……………7分
于是,△OAB的面积 --------10分
代入,可解出
∴△OAB的面积为椭圆方程是……………12分
考点:本试题考查了直线与椭圆的位置关系的运用。
点评:解决该试题的关键是通过联立方程组,得到二次方程中判别式大于零,得到证明。同时要结合向量的坐标关系,以及根与系数的关系,解得坐标,求解面积和椭圆方程。属于中档题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,在平面直角坐标系中,以轴为始边作两个锐角,它们的终边分别交单位圆于两点.已知两点的横坐标分别是

(1)求的值;(2)求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知抛物线顶点在原点,焦点在x轴上,又知此抛物线上一点A(4,m)到焦点的距离为6.  
(1)求此抛物线的方程;
(2)若此抛物线方程与直线相交于不同的两点A、B,且AB中点横坐标为2,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

椭圆的右焦点与抛物线的焦点重合,过作与轴垂直的直线与椭圆交于两点,与抛物线交于两点,且
(1)求椭圆的方程;
(2)若过点的直线与椭圆相交于两点,设为椭圆上一点,且满足
为坐标原点),当时,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆C:=1(a>b>0)的离心率为,短轴一个端点到右焦点的距离为.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设直线l与椭圆C交于A、B两点,坐标原点O到直线l的距离为,求△AOB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)
双曲线的中心为原点,焦点在轴上,两条渐近线分别为,经过右焦点垂直于的直线分别交两点.已知成等差数列,且同向.
(Ⅰ)求双曲线的离心率;
(Ⅱ)设被双曲线所截得的线段的长为4,求双曲线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分15分)
在平面内,已知椭圆的两个焦点为,椭圆的离心率为 ,点是椭圆上任意一点, 且
(1)求椭圆的标准方程;
(2)以椭圆的上顶点为直角顶点作椭圆的内接等腰直角三角形,这样的等腰直角三角形是否存在?若存在请说明有几个、并求出直角边所在直线方程?若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)
已知椭圆的离心率为,椭圆C上任意一点到椭圆两个焦点的距离之和为6。
(1)求椭圆C的方程;
(2)设直线与椭圆C交于A、B两点,点P(0,1),且|PA|=|PB|,求直线的方程。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知抛物线的顶点在原点,它的准线过双曲线的一个焦点,并与双曲线的实轴垂直,已知抛物线与双曲线的交点为.
(1)求抛物线的方程;
(2)求双曲线的方程.

查看答案和解析>>

同步练习册答案