(本小题满分12分)设直线与椭圆相交于两个不同的点,与轴相交于点,记为坐标原点.
(1)证明:
(2)若且的面积及椭圆方程.
科目:高中数学 来源: 题型:解答题
已知抛物线顶点在原点,焦点在x轴上,又知此抛物线上一点A(4,m)到焦点的距离为6.
(1)求此抛物线的方程;
(2)若此抛物线方程与直线相交于不同的两点A、B,且AB中点横坐标为2,求k的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
椭圆:的右焦点与抛物线的焦点重合,过作与轴垂直的直线与椭圆交于两点,与抛物线交于两点,且。
(1)求椭圆的方程;
(2)若过点的直线与椭圆相交于两点,设为椭圆上一点,且满足
为坐标原点),当时,求实数的取值范围。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C:=1(a>b>0)的离心率为,短轴一个端点到右焦点的距离为.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设直线l与椭圆C交于A、B两点,坐标原点O到直线l的距离为,求△AOB面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分12分)
双曲线的中心为原点,焦点在轴上,两条渐近线分别为,经过右焦点垂直于的直线分别交于两点.已知成等差数列,且与同向.
(Ⅰ)求双曲线的离心率;
(Ⅱ)设被双曲线所截得的线段的长为4,求双曲线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分15分)
在平面内,已知椭圆的两个焦点为,椭圆的离心率为 ,点是椭圆上任意一点, 且,
(1)求椭圆的标准方程;
(2)以椭圆的上顶点为直角顶点作椭圆的内接等腰直角三角形,这样的等腰直角三角形是否存在?若存在请说明有几个、并求出直角边所在直线方程?若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分12分)
已知椭圆的离心率为,椭圆C上任意一点到椭圆两个焦点的距离之和为6。
(1)求椭圆C的方程;
(2)设直线与椭圆C交于A、B两点,点P(0,1),且|PA|=|PB|,求直线的方程。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线的顶点在原点,它的准线过双曲线的一个焦点,并与双曲线的实轴垂直,已知抛物线与双曲线的交点为.
(1)求抛物线的方程;
(2)求双曲线的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com