精英家教网 > 高中数学 > 题目详情

(本题满分12分)
双曲线的中心为原点,焦点在轴上,两条渐近线分别为,经过右焦点垂直于的直线分别交两点.已知成等差数列,且同向.
(Ⅰ)求双曲线的离心率;
(Ⅱ)设被双曲线所截得的线段的长为4,求双曲线的方程.

(Ⅰ)e==;(Ⅱ)

解析试题分析:(Ⅰ)设
由勾股定理可得:            
得:
由倍角公式,解得,则离心率
(Ⅱ)过直线方程为,与双曲线方程联立
代入,
化简有 

将数值代入,有,解得 
故所求的双曲线方程为
解法二:解:(Ⅰ)设双曲线方程为(a>0,b>0),右焦点为F(c,0)(c>0),则c2=a2+b2
不妨设l1:bx-ay=0,l2:bx+ay=0

则         

因为2+2=2,且=2-
所以2+2=(2-)2
于是得tan∠AOB=
同向,故∠AOF=∠AOB,
所以       
解得        tan∠AOF=,或tan∠AOF=-2(舍去)。
因此       
所以双曲线的离心率e==
(Ⅱ)由a=2b知,双曲线的方程可化为
x2-4y2=4b2                               ①
由l1的斜率为,c=b知,直线AB的方程为
y=-2(x-b)                             ②
将②代入①并化简,得
15x2-32bx+84b2=0
设AB与双曲线的两交点的坐标分别为(x1,y1),(x2,y2),则
x1+x2=,x1·x2=               ③
AB被双曲线所截得的线段长
l= ④
将③代入④,并化简得l=,而由已知l=4,故b=3,a=6
所以双曲线的方程为
考点:本题主要考查双曲线的几何性质,直线与双曲线的位置关系,两角和的正切公式。
点评:中档题,涉及直线与圆锥曲线的位置关系问题,往往要利用韦达定理。弦长问题,往往利用弦长公式,通过整体代换,简化解题过程。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知椭圆的方程为,点P的坐标为(-a,b).
(1)若直角坐标平面上的点M、A(0,-b),B(a,0)满足,求点的坐标;
(2)设直线交椭圆两点,交直线于点.若,证明:的中点;
(3)对于椭圆上的点Q(a cosθ,b sinθ)(0<θ<π),如果椭圆上存在不同的两个交点满足,写出求作点的步骤,并求出使存在的θ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分,(Ⅰ)小问3分,(Ⅱ)小问9分.)
直线称为椭圆的“特征直线”,若椭圆的离心率.(1)求椭圆的“特征直线”方程;
(2)过椭圆C上一点作圆的切线,切点为PQ,直线PQ与椭圆的“特征直线”相交于点EFO为坐标原点,若取值范围恰为,求椭圆C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
在平面直角坐标系中,已知三点,曲线C上任意—点满足:
(l)求曲线C的方程;
(2)设点P是曲线C上的任意一点,过原点的直线L与曲线相交于M,N两点,若直线PM,PN的斜率都存在,并记为.试探究的值是否与点P及直线L有关,并证明你的结论;
(3)设曲线C与y轴交于D、E两点,点M (0,m)在线段DE上,点P在曲线C上运动.若当点P的坐标为(0,2)时,取得最小值,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)设直线与椭圆相交于两个不同的点,与轴相交于点,记为坐标原点.
(1)证明:
(2)若的面积及椭圆方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分13分)
已知点为抛物线: 的焦点,为抛物线上的点,且

(Ⅰ)求抛物线的方程和点的坐标;
(Ⅱ)过点引出斜率分别为的两直线与抛物线的另一交点为与抛物线的另一交点为,记直线的斜率为
(ⅰ)若,试求的值;
(ⅱ)证明:为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分13分)
已知点,△的周长为6.
(Ⅰ)求动点的轨迹的方程;
(Ⅱ)设过点的直线与曲线相交于不同的两点.若点轴上,且,求点的纵坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分13分)
已知椭圆C的对称轴为坐标轴,且短轴长为4,离心率为
(Ⅰ)求椭圆C的方程;
(Ⅱ)设椭圆C的焦点在y轴上,斜率为1的直线l与C相交于A,B两点,且
,求直线l的方程。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知点F是抛物线C:的焦点,S是抛物线C在第一象限内的点,且|SF|=

(Ⅰ)求点S的坐标;
(Ⅱ)以S为圆心的动圆与轴分别交于两点A、B,延长SA、SB分别交抛物线C于M、N两点;
①判断直线MN的斜率是否为定值,并说明理由;
②延长NM交轴于点E,若|EM|=|NE|,求cos∠MSN的值.

查看答案和解析>>

同步练习册答案