精英家教网 > 高中数学 > 题目详情

已知椭圆的方程为,点P的坐标为(-a,b).
(1)若直角坐标平面上的点M、A(0,-b),B(a,0)满足,求点的坐标;
(2)设直线交椭圆两点,交直线于点.若,证明:的中点;
(3)对于椭圆上的点Q(a cosθ,b sinθ)(0<θ<π),如果椭圆上存在不同的两个交点满足,写出求作点的步骤,并求出使存在的θ的取值范围.

(1)  (2)采用联立方程组结合韦达定理和中点公式来证明。
(3)

解析试题分析:(1) ; () 由方程组
,消y得方,因为直线交圆两点,所以D>0,即,设C(x1 ,y1 )、D(x2 ,y2 , D中点坐标为(x0 ,y0 ),则,由方组,消y得方(k2 -k1 )xp,又因为,所以,故E为CD的中点;
(3) 作点P1、P2的步骤:°求出PQ的中点,2°求出直线OE的斜率,3由知E为CD的中点,根据()可得CD的斜率,4°从而得直线CD的方程:, 5°将直线CD与圆
Γ的方程联立,方程组的解即为点P1 P2的坐标.
使P1、P2存在,必须点在椭圆内,所以,化简得,,又0<q <p,即,所以,故q 的取值范围是.
考点:直线与圆锥曲线的综合
点评:本题主要考查了直线与圆锥曲线的综合问题.解题的前提是要求学生对基础知识有相当熟练的把握。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知直线过定点,动点满足,动点的轨迹为.
(Ⅰ)求的方程;
(Ⅱ)直线交于两点,以为切点分别作的切线,两切线交于点.
①求证:;②若直线交于两点,求四边形面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知两点,点在以为焦点的椭圆上,且构成等差数列.

(1)求椭圆的方程;
(2)如图7,动直线与椭圆有且仅有一个公共点,点是直线上的两点,且. 求四边形面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题13分)在平面直角坐标系中,是抛物线的焦点,是抛物线上位于第一象限内的任意一点,过三点的圆的圆心为,点到抛物线的准线的距离为.
(Ⅰ)求抛物线的方程;
(Ⅱ)是否存在点,使得直线与抛物线相切于点?若存在,求出点的坐标;若不存在,说明理由;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在平面直角坐标系中,以轴为始边作两个锐角,它们的终边分别交单位圆于两点.已知两点的横坐标分别是

(1)求的值;(2)求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知椭圆中心在原点,焦点在y轴上,焦距为4,离心率为

(I)求椭圆方程;
(II)设椭圆在y轴的正半轴上的焦点为M,又点A和点B在椭圆上,且M分有向线段所成的比为2,求线段AB所在直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分14分)
已知在平面直角坐标系中的一个椭圆,它的中心在原点,左焦点为,右顶点为,设点.
(1)求该椭圆的标准方程;
(2)若是椭圆上的动点,求线段中点的轨迹方程;
(3)过原点的直线交椭圆于点,求面积的最大值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)己知是椭圆)上的三点,其中点的坐标为过椭圆的中心,且
(Ⅰ)求椭圆的方程;
(Ⅱ)过点的直线(斜率存在时)与椭圆交于两点,设为椭圆 轴负半轴的交点,且,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)
双曲线的中心为原点,焦点在轴上,两条渐近线分别为,经过右焦点垂直于的直线分别交两点.已知成等差数列,且同向.
(Ⅰ)求双曲线的离心率;
(Ⅱ)设被双曲线所截得的线段的长为4,求双曲线的方程.

查看答案和解析>>

同步练习册答案