(本小题满分12分)己知、、是椭圆:()上的三点,其中点的坐标为,过椭圆的中心,且,。
(Ⅰ)求椭圆的方程;
(Ⅱ)过点的直线(斜率存在时)与椭圆交于两点,,设为椭圆与 轴负半轴的交点,且,求实数的取值范围.
科目:高中数学 来源: 题型:解答题
某同学用《几何画板》研究抛物线的性质:打开《几何画板》软件,绘制某抛物线,在抛物线上任意画一个点,度量点的坐标,如图.
(Ⅰ)拖动点,发现当时,,试求抛物线的方程;
(Ⅱ)设抛物线的顶点为,焦点为,构造直线交抛物线于不同两点、,构造直线、分别交准线于、两点,构造直线、.经观察得:沿着抛物线,无论怎样拖动点,恒有.请你证明这一结论.
(Ⅲ)为进一步研究该抛物线的性质,某同学进行了下面的尝试:在(Ⅱ)中,把“焦点”改变为其它“定点”,其余条件不变,发现“与不再平行”.是否可以适当更改(Ⅱ)中的其它条件,使得仍有“”成立?如果可以,请写出相应的正确命题;否则,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆的方程为,点P的坐标为(-a,b).
(1)若直角坐标平面上的点M、A(0,-b),B(a,0)满足,求点的坐标;
(2)设直线交椭圆于、两点,交直线于点.若,证明:为的中点;
(3)对于椭圆上的点Q(a cosθ,b sinθ)(0<θ<π),如果椭圆上存在不同的两个交点、满足,写出求作点、的步骤,并求出使、存在的θ的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在直角坐标系中,以O为极点,轴正半轴为极轴建立极坐标系,曲线C1的极坐标方程为,曲线的参数方程为,(为参数,)。
(Ⅰ)求C1的直角坐标方程;
(Ⅱ)当C1与C2有两个公共点时,求实数的取值范围。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)已知椭圆:()的离心率为,过右焦点且斜率为1的直线交椭圆于两点,为弦的中点。
(1)求直线(为坐标原点)的斜率;
(2)设椭圆上任意一点,且,求的最大值和最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分,(Ⅰ)小问3分,(Ⅱ)小问9分.)
直线称为椭圆的“特征直线”,若椭圆的离心率.(1)求椭圆的“特征直线”方程;
(2)过椭圆C上一点作圆的切线,切点为P、Q,直线PQ与椭圆的“特征直线”相交于点E、F,O为坐标原点,若取值范围恰为,求椭圆C的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
在平面直角坐标系中,已知三点,,,曲线C上任意—点满足:.
(l)求曲线C的方程;
(2)设点P是曲线C上的任意一点,过原点的直线L与曲线相交于M,N两点,若直线PM,PN的斜率都存在,并记为,.试探究的值是否与点P及直线L有关,并证明你的结论;
(3)设曲线C与y轴交于D、E两点,点M (0,m)在线段DE上,点P在曲线C上运动.若当点P的坐标为(0,2)时,取得最小值,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分13分)
已知椭圆C的对称轴为坐标轴,且短轴长为4,离心率为。
(Ⅰ)求椭圆C的方程;
(Ⅱ)设椭圆C的焦点在y轴上,斜率为1的直线l与C相交于A,B两点,且
,求直线l的方程。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com