(本小题满分12分)
在平面直角坐标系
中,已知三点
,
,
,曲线C上任意—点
满足:
.
(l)求曲线C的方程;
(2)设点P是曲线C上的任意一点,过原点的直线L与曲线相交于M,N两点,若直线PM,PN的斜率都存在,并记为
,
.试探究
的值是否与点P及直线L有关,并证明你的结论;
(3)设曲线C与y轴交于D、E两点,点M (0,m)在线段DE上,点P在曲线C上运动.若当点P的坐标为(0,2)时,
取得最小值,求实数m的取值范围.
(l)
(2) ![]()
(3) ![]()
解析试题分析:(1)由题意可得,
,
所以
,
又
,
所以
,即
.
(2)因为过原点的直线
与椭圆相交的两点
关于坐标原点对称,
所以可设
.
因为
在椭圆上,所以有
, ………①
, ………②
①-②得
.
又
,
,
所以
,
故
的值与点
的位置无关,与直线
也无关.
(3)由于
在椭圆
上运动,椭圆方程为
,故
,且
. 因为
,所以 ![]()
.
由题意,点
的坐标为
时,
取得最小值,即当
时,
取得最
小值,而
,故有
,解得
.
又椭圆
与
轴交于
两点的坐标为
、
,而点
在线段
上, 即
,亦即
,所以实数
的取值范围是
.
考点:求动点的轨迹方程及椭圆与直线相交的性质
点评:求轨迹方程的大体步骤:1建立直角坐标系,设出动点坐标,2找到关于动点的关系式,3关系式坐标化,整理化简,4除去不满足题意要求的个别点。本题第二三小题较复杂,学生很难达到满分
科目:高中数学 来源: 题型:解答题
(本小题13分)在平面直角坐标系
中,
是抛物线
的焦点,
是抛物线
上位于第一象限内的任意一点,过
三点的圆的圆心为
,点
到抛物线
的准线的距离为
.
(Ⅰ)求抛物线
的方程;
(Ⅱ)是否存在点
,使得直线
与抛物线
相切于点
?若存在,求出点
的坐标;若不存在,说明理由;
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)己知
、
、
是椭圆
:
(
)上的三点,其中点
的坐标为
,
过椭圆的中心,且
,
。
(Ⅰ)求椭圆
的方程;
(Ⅱ)过点
的直线
(斜率存在时)与椭圆
交于两点
,
,设
为椭圆
与
轴负半轴的交点,且
,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分12分)
如图,椭圆长轴端点为
,
为椭圆中心,![]()
为椭圆的右焦点,
且
,
.![]()
(1)求椭圆的标准方程;
(2)记椭圆的上顶点为
,直线
交椭圆于
两点,问:是否存在直线
,使点
恰为
的垂心?若存在,求出直线
的方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
椭圆
:
的右焦点
与抛物线
的焦点重合,过
作与
轴垂直的直线
与椭圆交于
两点,与抛物线交于
两点,且
。
(1)求椭圆
的方程;
(2)若过点
的直线与椭圆
相交于两点
,设
为椭圆
上一点,且满足![]()
为坐标原点),当
时,求实数
的取值范围。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
如图所示,将一矩形花坛
扩建成一个更大的矩形花坛
,要求
点在
上,
点在
上,且对角线
过点
,已知
米,
米.
(1)要使矩形
的面积大于32平方米,则
的长应在什么范围内?
(2)当
的长度为多少时,矩形花坛
的面积最小?并求出最小值.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分12分)
双曲线的中心为原点
,焦点在
轴上,两条渐近线分别为
,经过右焦点
垂直于
的直线分别交
于
两点.已知
成等差数列,且
与
同向.
(Ⅰ)求双曲线的离心率;
(Ⅱ)设
被双曲线所截得的线段的长为4,求双曲线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分15分)
给定椭圆C:
,称圆心在原点O、半径是
的圆为椭圆C的“准圆”.已知椭圆C的一个焦点为
,其短轴的一个端点到点
的距离为
.
(1)求椭圆C和其“准圆”的方程;
(2)若点
是椭圆C的“准圆”与
轴正半轴的交点,
是椭圆C上的两相异点,且
轴,求
的取值范围;
(3)在椭圆C的“准圆”上任取一点
,过点
作直线
,使得
与椭圆C都只有一个交点,试判断
是否垂直?并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知圆O:
和定点A(2,1),由圆O外一点
向圆O引切线PQ,切点为Q,且满足![]()
![]()
(1) 求实数a、b间满足的等量关系;
(2) 若以P为圆心所作的圆P与圆O有公共点,试求半径取最小值时圆P的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com