精英家教网 > 高中数学 > 题目详情

设函数)的导函数为,满足,则当时,的大小关系为

A.     B.     C.     D.不能确定 

 

【答案】

B

【解析】略

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数y=f(x)在区间(a,b)上的导函数为f′(x),f′(x)在区间(a,b)上的导函数为f″(x),若在区间(a,b)上f″(x)<0恒成立,则称函数f(x)在区间(a,b)上为“凸函数”.已知函数f(x)=
1
12
x4-
1
3
x3-
3
2
x2
在区间(a,b)上为“凸函数”,则b-a的最大值为(  )
A、4B、3C、2D、1

查看答案和解析>>

科目:高中数学 来源:2011届广东省梅州市曾宪梓中学高三上学期期末考试数学理卷 题型:解答题

(本小题满分14分)
设函数上的导函数为上的导函数为,若在上,恒成立,则称函数上为“凸函数”.已知
(1)若为区间上的“凸函数”,试确定实数的值;
(2)若当实数满足时,函数上总为“凸函数”,求的最大值.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年湖南省五市十高三第一次合检测文科数学试卷(解析版) 题型:选择题

设函数在区间的导函数为在区间的导函数为若在区间恒成立,则称函数在区间上为“凸函数”,已知,若对任意的实数m满足时,函数在区间上为“凸函数”,则的最大值为(   )

A.4                B.3                C.2                D.1

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年浙江省高三第一学期八校联考理科数学 题型:解答题

本题满分14分) 设函数上的导函数为上的导函数为.若在上,有恒成立,则称函数

上为“凸函数”.已知

(Ⅰ) 若为区间上的“凸函数”,试确定实数的值;

(Ⅱ) 若当实数满足时,函数上总为“凸函数”,求的最大值.

 

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年广东省梅州市高三上学期期末考试数学理卷 题型:解答题

(本小题满分14分)

设函数上的导函数为上的导函数为,若在上,恒成立,则称函数上为“凸函数”.已知

(1)若为区间上的“凸函数”,试确定实数的值;

(2)若当实数满足时,函数上总为“凸函数”,求的最大值.

 

 

查看答案和解析>>

同步练习册答案