| A. | 11 | B. | 12 | C. | 13 | D. | 14 |
分析 S1<0,2S21+S25=0,可得公差d>0.于是$2×(21{a}_{1}+\frac{21×20}{2}d)$+$25{a}_{1}+\frac{25×24}{2}d$=0,化为67a1+720d=0,可得67a1+670d<67a1+720d=0<67a1+737d,即67a11<0<67a12,即可得出.
解答 解:∵S1<0,2S21+S25=0,∴公差d>0.
∴$2×(21{a}_{1}+\frac{21×20}{2}d)$+$25{a}_{1}+\frac{25×24}{2}d$=0,
∴67a1+720d=0,
∵670<720<670+67,
∴67a1+670d<67a1+720d=0<67a1+737d,
∴67a11<0<67a12,
∴Sn取最小值时,n=11.
故选:A.
点评 本题考查了等差数列的通项公式及其前n项和公式、不等式的性质,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | $\frac{1}{2}$ | C. | 1 | D. | $-\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {0,1} | B. | {-1,0,1} | C. | {0,1,2} | D. | {-1,0,1,2} |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com