已知F(x)=mf(x)+ng(x)+x+2对任意x∈(0,+∞)都有F(x)≤F(2)=8,且f(x)与g(x)都是奇函数,则在(-∞,0)上F(x)有
最大值8
最小值-8
最大值-10
最小值-4
科目:高中数学 来源:2011-2012学年江西省高三第二次月考试卷文科数学 题型:解答题
(本小题满分12分)已知函数f(x)=2x-
.
(1)若f(x)=2,求x的值;
(2)若2tf(2t)+mf(t)≥0对于t∈[1,2]恒成立,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
已知向量u=(x,y)与向量v=(y,2y-x)的对应关系记作v=f(u).
(1)求证:对于任意向量a,b及常数m,n,恒有f(ma+nb)=mf(a)+nf(b);
(2)若a=(1,1),b=(1,0),用坐标表示f(a)和f(b);
(3)求使f(c)=(p,q)(p,q为常数)的向量c的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
某造船公司年最大造船量是20艘,已知造船x艘的产值函数为R(x)=3 700x+45x2-10x
3(单位:万元),成本函数为C(x)=460x+5 000(单位:万元),又在经济学中,函数f(x)的边际函数Mf(x)定义为Mf(x)=f(x+1)-f(x).
(1)求利润函数P(x)及边际利润函数MP(x);(提示:利润=产值-成本)
(2)问年造船量安排多少艘时,可使公司造船的年利润最大?
(3)求边际利润函数MP(x)的单调递减区间,并说明单调递减在本题中的实际意义是什么?
查看答案和解析>>
科目:高中数学 来源: 题型:
已知向量u=(x,y),v=(y,2y-x)的对应关系用v=f(u)来表示.
(1)证明对于任意向量a,b及常数m,n,恒有f(m a+n b)=mf(a)+nf(b)成立;
(2)设a=(1,1),b=(1,0),求向量f(a)及f(b)的坐标
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com