精英家教网 > 高中数学 > 题目详情
12.函数f(x)=-x2+2x+3在区间[-1,4]上的最大值与最小值的和为-1.

分析 直接利用配方法求函数的最值,作和后得答案.

解答 解:f(x)=-x2+2x+3=-(x-1)2+4,
当x=1时,f(x)max=4;当x=4时,f(x)min=-5.
∴f(x)在区间[-1,4]上的最大值与最小值的和为4-5=-1.
故答案为:-1.

点评 本题考查二次函数在闭区间上的最值,训练了配方法,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.计算2lg2+lg25+($\sqrt{3}$)0=3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.有下列四个命题:
①在△ABC中,a、b分别是角A、B所对的边,若a<b,则sinA<sinB;
②若a>b,则$-\frac{1}{a}>-\frac{1}{b}$;
③在正项等比数列{an}中,若a4a5=9,则log3a1+log3a2+…+log3a8=8;
④若关于x的不等式mx2+mx+1>0恒成立,则m的取值范围是[0,4).
其中所有正确命题的序号为①③④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.下列函数中,随x的增大,其增大速度最快的是(  )
A.y=0.001exB.y=1000lnxC.y=x1000D.y=1000•2x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.与函数y=x是同一个函数的是(  )
A.y=$\sqrt{x^2}$B.y=$\frac{x^2}{x}$C.$y={a^{{{log}_a}x}}$D.y=logaax

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数$f(x)={(\frac{1}{2})^{mx}}$,m为常数,且函数的图象过点(1,2)
(1)求m的值;
(2)若g(x)=4x-6,且g(x)=f(x),求满足条件的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知数列{an}满足an+1-2an=0,且a1=3.
(1)写出数列的通项公式;
(2)96是数列中的项吗?若是,是第几项,若不是说明理由;
(3)若bn=3an+1,数列{bn}的前n项和为Sn,求Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设F1,F2分别为双曲线C的左右焦点,直线l过F2且与C的右支交于A,B两点,若△F1AB为直角三角形,且|F1A|,|AB|,|F1B|成等差数列,则双曲线C的离心率为(  )
A.$\sqrt{10}$B.$\frac{\sqrt{10}}{2}$C.$\frac{\sqrt{10}}{3}$D.$\frac{2\sqrt{10}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如图所示,已知点G是△ABC的重心,过点G作直线与AB,AC两边分别交于M,N两点,且$\overrightarrow{AM}$=x$\overrightarrow{AB}$,$\overrightarrow{AN}$=y$\overrightarrow{AC}$,则x+2y的最小值为(  )
A.2B.$\frac{1}{3}$C.$\frac{{3+2\sqrt{2}}}{3}$D.$\frac{3}{4}$

查看答案和解析>>

同步练习册答案