【题目】已知函数
,
.
(1)求使方程
存在两个实数解时,
的取值范围;
(2)设
,函数
,
.若对任意
,总存在
,使得
,求实数
的取值范围.
【答案】(1)
;(2)
.
【解析】
(1)求出导函数,可得函数
在区间
上单调递增,在
上单调递减,求得
,
,
,利用
可得结果;(2)由(1)知
,设
的值域为
,因为对任意
,总存在
,使得
,等价于
.利用导数研究函数的单调性,求出
的值域
,根据包含关系列不等式求解即可,
(1)
.
令
,得
;令
,得
,
所以函数
在区间
上单调递增,在
上单调递减,
所以
,又
,
,
要使方程
存在两个实数解,则
,
解得
.
(2)由(1)知
,设
的值域为
,因为对任意
,总存在
,使得
,所以
.
因为
,所以
,
当
时,
在
上恒成立,所以
在
上单调递减,
又
,不可能满足
.
当
时,由于
,
若
,即
,
在
上单调递减,在
上单调递增,
,又
,
,要使
,则必须有
,化简得
,解得
,又
,所以
.
若
,即
,
在
上单调递减,不可能满足
.
综上,实数
的取值范围为
.
科目:高中数学 来源: 题型:
【题目】已知二次函数
交
轴于
两点(
不重合),交
轴于
点. 圆
过
三点.下列说法正确的是( )
① 圆心
在直线
上;
②
的取值范围是
;
③ 圆
半径的最小值为
;
④ 存在定点
,使得圆
恒过点
.
A. ①②③B. ①③④C. ②③D. ①④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】团体购买公园门票,票价如下表:
购票人数 | 1~50 | 51~100 | 100以上 |
门票价格 | 13元/人 | 11元/人 | 9元/人 |
现某单位要组织其市场部和生产部的员工游览该公园,这两个部门人数分别为a和b
,若按部门作为团体,选择两个不同的时间分别购票游览公园,则共需支付门票费为1290元;若两个部门合在一起作为一个团体,同一时间购票游览公园,则需支付门票费为990元,那么这两个部门的人数
____;
____.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某中学为了组建一支业余足球队,在高一年级随机选取50名男生测量身高,发现被测男生的身高全部在
到
之间,将测量结果按如下方式分成六组:第1组
,第2组
,…,第6组
,如图是按上述分组得到的频率分布直方图,以频率近似概率.
![]()
(1)若学校要从中选1名男生担任足球队长,求被选取的男生恰好在第5组或第6组的概率;
(2)试估计该校高一年级全体男生身高的平均数(同一组中的数据用该组区间的中点值代表)与中位数;
(3)现在从第5与第6组男生中选取两名同学担任守门员,求选取的两人中最多有1名男生来自第5组的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
过点
,且它的焦距是短轴长的
倍.
(1)求椭圆
的方程.
(2)若
,
是椭圆
上的两个动点(
,
两点不关于
轴对称),
为坐标原点,
,
的斜率分别为
,
,问是否存在非零常数
,使当
时,
的面积
为定值?若存在,求
的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆
:
的左、右焦点分别为
,
,下顶点为
,椭圆
的离心率是
,
的面积是
.
(1)求椭圆
的标准方程.
(2)直线
与椭圆
交于
,
两点(异于
点),若直线
与直线
的斜率之和为1,证明:直线
恒过定点,并求出该定点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义:对于数列
,如果存在常数
,使对任意正整数
,总有
成立,那么我们称数列
为“
﹣摆动数列”.
①若
,
,
,则数列
_____“
﹣摆动数列”,
_____“
﹣摆动数列”(回答是或不是);
②已知“
﹣摆动数列”
满足
,
.则常数
的值为_____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com