【题目】已知集合{(x,y)|x∈[0,2],y∈[﹣1,1]}
(1)若x,y∈Z,求x+y≥0的概率;
(2)若x,y∈R,求x+y≥0的概率.
【答案】
(1)解:设事件“x,y∈Z,x+y≥0”为A,x,y∈Z,x∈[0,2],y∈[﹣1,1]}
即x=0,1,2,﹣1.0.1则基本事件总和n=9,其中满足“x+y≥0”的基本事件m=8,
P(A)=
故所求的f的概率为 .
(2)解:设事件“x,y∈R,x+y≥0”为B,
x∈[0,2],y∈[﹣1,1]
基本事件如图四边形ABCD区域
S=4,事件B包括的区域如阴影部分
S′=S﹣ =
∴P(B)=
故所求的概率为 .
【解析】(1)因为x,y∈Z,且x∈[0,2],y∈[﹣1,1],基本事件是有限的,所以为古典概型,这样求得总的基本事件的个数,再求得满足x,y∈Z,x+y≥0的基本事件的个数,然后求比值即为所求的概率.(2)因为x,y∈R,且围成面积,则为几何概型中的面积类型,先求x,y∈Z,求x+y≥0表示的区域的面积,然后求比值即为所求的概率.
【考点精析】本题主要考查了几何概型的相关知识点,需要掌握几何概型的特点:1)试验中所有可能出现的结果(基本事件)有无限多个;2)每个基本事件出现的可能性相等才能正确解答此题.
科目:高中数学 来源: 题型:
【题目】已知圆C:x2﹣(1+a)x+y2﹣ay+a=0(a∈R). (Ⅰ) 若a=1,求直线y=x被圆C所截得的弦长;
(Ⅱ) 若a>1,如图,圆C与x轴相交于两点M,N(点M在点N的左侧).过点M的动直线l与圆O:x2+y2=4相交于A,B两点.问:是否存在实数a,使得对任意的直线l均有∠ANM=∠BNM?若存在,求出实数a的值,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=| ﹣ax|,若对任意的正实数a,总存在x0∈[1,4],使得f(x0)≥m,则实数m的取值范围为( )
A.(﹣∞,0]
B.(﹣∞,1]
C.(﹣∞,2]
D.(﹣∞,3]
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】要得到函数y=log2(2x+1)的图象,只需将y=1+log2x的图象( )
A.向左移动 个单位
B.向右移动 个单位
C.向左移动1个单位
D.向右移动1个单位
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}中,a1=2,a2=6,且数列{an﹣1﹣an}{n∈N*}是公差为2的等差数列.
(1)求{an}的通项公式;
(2)记数列{ }的前n项和为Sn , 求满足不等式Sn> 的n的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在正方体ABCD﹣A1B1C1D1中,AB=2,点E是BC的中点.
(1)求线段DE的长;
(2)求直线A1E与平面ADD1A1所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知a∈R,当x>0时,f(x)=log2( +a).
(1)若函数f(x)过点(1,1),求此时函数f(x)的解析式;
(2)若函数g(x)=f(x)+2log2x只有一个零点,求实数a的范围;
(3)设a>0,若对任意实数t∈[ ,1],函数f(x)在[t,t+1]上的最大值与最小值的差不大于1,求实数a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com