精英家教网 > 高中数学 > 题目详情

【题目】设函数f(x)=| ﹣ax|,若对任意的正实数a,总存在x0∈[1,4],使得f(x0)≥m,则实数m的取值范围为(
A.(﹣∞,0]
B.(﹣∞,1]
C.(﹣∞,2]
D.(﹣∞,3]

【答案】D
【解析】解:对任意的正实数a,总存在x0∈[1,4],使得f(x0)≥mm≤f(x)max,x∈[1,4].

令u(x)= ﹣ax,∵a>0,∴函数u(x)在x∈[1,4]单调递减,

∴u(x)max=u(1)=4﹣a,u(x)min=1﹣a.①a≥4时,0≥4﹣a>1﹣a,则f(x)max=a﹣1≥3.②4>a>1时,4﹣a>0>1﹣a,则f(x)max={4﹣a,a﹣1}max<3.③a≤1时,4﹣a>1﹣a≥0,则f(x)max=4﹣a≥3.

综上①②③可得:m≤3.

∴实数m的取值范围为(﹣∞,3].

故选:D.

【考点精析】通过灵活运用函数的最值及其几何意义,掌握利用二次函数的性质(配方法)求函数的最大(小)值;利用图象求函数的最大(小)值;利用函数单调性的判断函数的最大(小)值即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=sin2ωx+2 cosωxsinωx+sin(ωx+ )sin(ωx﹣ )(ω>0),且f(x)的最小正周期为π.
(1)求ω的值;
(2)求函数f(x)在区间(0,π)上的单调增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,以坐标原点O为圆心的单位圆与x轴正半轴相交于点A,点B、P在单位圆上,且B(﹣ ),∠AOB=α.
(1)求 的值;
(2)设∠AOP=θ( ≤θ≤ ), = + ,四边形OAQP的面积为S,f(θ)=( 2+2S2 ,求f(θ)的最值及此时θ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数y= 的定义域是(
A.[1,+∞)
B.(1,+∞)
C.(0,1]
D.( ,1]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义min{a,b}= ,若函数f(x)=min{x2﹣3x+3,﹣|x﹣3|+3},且f(x)在区间[m,n]上的值域为[ ],则区间[m,n]长度的最大值为(
A.1
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2014年5月,北京市提出地铁分段计价的相关意见,针对“你能接受的最高票价是多少?”这个问题,在某地铁站口随机对50人进行调查,调查数据的频率分布直方图及被调查者中35岁以下的人数与统计结果如下: (Ⅰ)根据频率分布直方图,求a的值,并估计众数,说明此众数的实际意义;
(Ⅱ)从“能接受的最高票价”落在[8,10),[10,12]的被调查者中各随机选取3人进行追踪调查,记选中的6人中35岁以上(含35岁)的人数为X,求随机变量X的分布列及数学期望.

最高票价

35岁以下人数

[2,4)

2

[4,6)

8

[6,8)

12

[8,10)

5

[10,12]

3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列各组中的函数f(x),g(x)表示同一函数的是(
A.f(x)=x,g(x)=
B.f(x)=x+1,g(x)=
C.f(x)=|x|,g(x)=
D.f(x)=log22x , g(x)=2log2x

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合{(x,y)|x∈[0,2],y∈[﹣1,1]}
(1)若x,y∈Z,求x+y≥0的概率;
(2)若x,y∈R,求x+y≥0的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知过点M(﹣3,0)的直线l被圆x2+(y+2)2=25所截得的弦长为8,那么直线l的方程为

查看答案和解析>>

同步练习册答案