精英家教网 > 高中数学 > 题目详情
已知数列{ an}的前n项和为Sn,a1=1,Sn+1=4an+1,设bn=an+1-2an
(Ⅰ)证明数列{bn}是等比数列;
(Ⅱ)数列{cn}满足cn=
1
log2bn+3
(n∈N*),设Tn=c1c2+c2c3+c3c4+,…+cncn+1,求证,对一切n∈N*不等式Tn
1
4
恒成立.
分析:(Ⅰ)由Sn+1=4an+1可得n≥2时,Sn=4an-1+1,两式作差即可得一递推式,根据bn=an+1-2an及等比数列的定义即可证明;
(Ⅱ)由(Ⅰ)可求得bn,进而求得cn,利用裂项相消法可求得Tn,根据Tn表达式即可证明结论;
解答:证明:(Ⅰ)由于Sn+1=4an+1,①
当n≥2时,Sn=4an-1+1.        ②
①-②得 an+1=4an-4an-1.    所以an+1-2an=2(an-2an-1).
又bn=an+1-2an,所以bn=2bn-1
因为a1=1,且a1+a2=4a1+1,所以a2=3a1+1=4. 所以b1=a2-2a1=2.
故数列{bn}是首项为2,公比为2的等比数列.
(Ⅱ)由(Ⅰ)可知bn=2n,则cn=
1
log2bn+3
=
1
n+3
(n∈N*).
Tn=c1c2+c2c3+c3c4+…+cncn+1
=
1
4×5
+
1
5×6
+
1
6×7
+…
+
1
(n+3)(n+4)

=
1
4
-
1
5
+
1
5
-
1
6
+…+
1
n+3
-
1
n+4

=
1
4
-
1
n+4
1
4
点评:本题考查数列与不等式的综合、等比数列的判定及数列求和,若{an}为等差数列,公差d≠0,则{
1
anan+1
}的前n项和可用列项相消法,其中
1
anan+1
=
1
d
1
an
-
1
an+1
).
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{
anpn-1
}
的前n项和Sn=n2+2n(其中常数p>0),数列{an}的前n项和为Tn
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求Tn的表达式;
(Ⅲ)若对任意n∈N*,都有(1-p)Tn+pan≥2pn恒成立,求p的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列(an}满足:a1=
1
2
,an+1=
n+1
2n
an,数列{bn}满足nbn=an(n∈N*).
(1)证明数列{bn}是等比数列,并求其通项公式:
(2)求数列{an}的前n项和Sn
(3)在(2)的条件下,若集合{n|
(n2+n)(2-Sn)
n+2
≥λ,n∈N*}=∅.求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列(an}为Sn且有a1=2,3Sn=5an-an-1+3Sn-1 (n≥2)
(I)求数列{an}的通项公式;
(Ⅱ)若bn=(2n-1)an,求数列{bn}前n和Tn
(Ⅲ)若cn=tn[lg(2t)n+lgan+2](0<t<1),且数列{cn}中的每一项总小于它后面的项,求实数t取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{
a
 
n
}
的前n项和为Sn,且向量
a
=(n,Sn)
b
=(4,n+3)
共线.
(Ⅰ)求证:数列{an}是等差数列;
(Ⅱ)求数列{
1
nan
}
的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列数列{an}前n项和Sn=-
1
2
n2+kn
(其中k∈N*),且Sn的最大值为8.
(Ⅰ)确定常数k并求{an}的通项公式;
(Ⅱ)若bn=9-2an,求数列{
1
bnbn+1
}
前n项和Tn

查看答案和解析>>

同步练习册答案