精英家教网 > 高中数学 > 题目详情
(2012•奉贤区二模)数列{an} 的各项均为正数,a1=p,p>0,k∈N*,an+an+k=f(p,k)•pn
(1)当k=1,f(p,k)=p+k,p=5时,求a2,a3
(2)若数列{an}成等比数列,请写出f(p,k)满足的一个条件,并写出相应的通项公式(不必证明);
(3)当k=1,f(p,k)=p+k时,设Tn=a1+2a2+3a3+…+2an+an+1,求Tn
分析:(1)由题意,an+an+1=6•5n,利用a1=p=5,代入计算,即可求得a2,a3
(2)设出公比,利用an+an+k=f(p,k)•pn,即可得到当f(p,k)=1+pk时,an=pn
(3)当k=1,f(p,k)=p+k时,an+an+1=(1+p)pn,再利用分组求和,即可得到结论.
解答:解:(1)由题意,an+an+1=6•5n
∵a1=p=5,
∴a2=25,a3=125
(2)数列{an}成等比数列,设公比为q,则an=p×qn-1
∴an+k=p×qn+k-1
∴an+an+k=p×qn-1+p×qn+k-1=(1+qk)×p×qn-1
∵an+an+k=f(p,k)•pn
∴q=p时,f(p,k)=1+pk时,an+an+k=(1+pk)•pn且an=pn
(3)当k=1,f(p,k)=p+k时,an+an+1=(1+p)pn
由(2)知,∴Tn=a1+2a2+3a3+…+2an+an+1=(a1+a2)+(a2+a3)+…+(an+an+1)=(1+p)(p+p2+…+pn
p=1时,Tn=2n;当p≠1且p>0时,Tn=
(1+p)p(1-pn)
1-p
点评:本题考查数列递推式,考查数列的通项与求和,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•奉贤区二模)已知函数f(x)=
3
sin2x+sinxcosx
x∈[
π
2
, π]

(Ⅰ)求方程f(x)=0的根;
(Ⅱ)求f(x)的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•奉贤区二模)如图,一个空间几何体的正视图、侧视图、俯视图为全等的等腰直角三角形,如果直角三角形的直角边长为1,那么这个几何体的体积为
1
6
1
6

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•奉贤区二模)若集合A={-1,0,1},B={y|y=cosx,x∈A},则A∩B=
{1}
{1}

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•奉贤区二模)已知cos(x-
π
6
)=-
3
3
,则cosx+cos(x-
π
3
)=
-1
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•奉贤区二模)过平面区域
x-y+2≥0
y+2≥0
x+y+2≤0
内一点P作圆O:x2+y2=1的两条切线,切点分别为A,B,记∠APB=α,当α最小时,此时点P坐标为
(-4,-2)
(-4,-2)

查看答案和解析>>

同步练习册答案