精英家教网 > 高中数学 > 题目详情
14.已知函数f(x)=$\left\{\begin{array}{l}{lo{g}_{3}x(x>0)}\\{{2}^{-x}+1(x≤0)}\end{array}\right.$,则f(f(1))+f(log2$\frac{1}{3}$)的值是(  )
A.6B.5C.$\frac{7}{2}$D.$\frac{5}{3}$

分析 由已知中函数f(x)=$\left\{\begin{array}{l}{lo{g}_{3}x(x>0)}\\{{2}^{-x}+1(x≤0)}\end{array}\right.$,将x=1和x=log2$\frac{1}{3}$代入可得答案.

解答 解:∵函数f(x)=$\left\{\begin{array}{l}{lo{g}_{3}x(x>0)}\\{{2}^{-x}+1(x≤0)}\end{array}\right.$,
∴f(1)=0,f(f(1))=f(0)=2,
f(log2$\frac{1}{3}$)=3+1=4,
故f(f(1))+f(log2$\frac{1}{3}$)=6,
故选:A

点评 本题考查的知识点是分段函数的应用,函数求值,对数的运算性质,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)对任意的x∈R都满足f(x)+f(-x)=0,当x≥0时,f(x)=$\left\{\begin{array}{l}{-x,0≤x≤a}\\{-a,a<x<2a}\\{x-3a,x≥2a}\end{array}\right.$,(a>0),若对?x∈R,都有f(x-2)≤f(x),则实数a的取值范围为(  )
A.(0,$\frac{1}{4}$)B.[$\frac{1}{4}$,$\frac{1}{3}$]C.(0,$\frac{1}{3}$]D.(0,$\frac{1}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.集合{1,2}的子集个数为4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.解关于x的不等式(x-a)(x-$\frac{1}{a}$)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设f(x)=4cos(ωx+$\frac{π}{6}$)sinωx-cos2ωx+1,其中0<ω<2.
(Ⅰ)若x=$\frac{π}{4}$是函数f(x)的一条对称轴,求函数f(x)的周期T;
(Ⅱ)若函数f(x)在区间[-$\frac{π}{6}$,$\frac{π}{3}$]上为增函数,求ω的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.如图所示是某一几何体的三视图,则这个几何体是(  )
A.圆柱体B.圆锥体C.正方体D.球体

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设f(x)在(0,+∞)内可导,且当x>0时,${∫}_{\;}^{\;}$f(x3)dx=(x-1)e-x+C,则f(1)=$\frac{1}{e}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知tanα=-$\frac{12}{5}$,$\frac{3π}{2}$<α<2π,则sinα=-$\frac{12}{13}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知正四棱台ABCD-A1B1C1D1的高为2,A1B1=1,AB=2,则该四棱台的侧面积等于3$\sqrt{17}$.

查看答案和解析>>

同步练习册答案