精英家教网 > 高中数学 > 题目详情
5.已知正四棱台ABCD-A1B1C1D1的高为2,A1B1=1,AB=2,则该四棱台的侧面积等于3$\sqrt{17}$.

分析 由已知条件先求出斜高,由此能求出该四棱台的侧面积.

解答 解:如图,在正四棱台ABCD-A1B1C1D1的高为2,A1B1=1,AB=2,
∴斜高$E{A}_{1}=\sqrt{{2}^{2}+(\frac{1}{2})^{2}}$=$\frac{\sqrt{17}}{2}$,
∴该四棱台的侧面积:S=4×$\frac{1+2}{2}×\frac{\sqrt{17}}{2}$=3$\sqrt{17}$.
故答案为:$3\sqrt{17}$.

点评 本题考查正四棱台的侧面积的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)=$\left\{\begin{array}{l}{lo{g}_{3}x(x>0)}\\{{2}^{-x}+1(x≤0)}\end{array}\right.$,则f(f(1))+f(log2$\frac{1}{3}$)的值是(  )
A.6B.5C.$\frac{7}{2}$D.$\frac{5}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.函数y=tan(2x-$\frac{π}{4}$),($\frac{π}{4}$≤x≤$\frac{π}{2}$,x≠$\frac{3π}{8}$)的值域为(-∞,-1]∪[1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知定义域为R的奇函数f(x)满足,当x<0时,f(x)=9x+$\frac{{m}^{2}}{x}$+9,若f(x)≥m+1对一切x≥0成立,则实数m的取值范围是{m|m≥2或m≤-$\frac{10}{7}$}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}-bx+c\\;x≥0}\\{{e}^{x}\\;x<0}\end{array}\right.$,其中b=$\frac{2}{π}$${∫}_{-2}^{2}$$\sqrt{4-{x}^{2}}$dx,c为目标函数z=2x+4y在约束条件$\left\{\begin{array}{l}{y≥0}\\{x+y-1≤0}\\{x-y+2≥0}\end{array}\right.$,内的最大值,则f(x)<10的解集为(  )
A.(-∞,0)B.[0,5)C.(-∞,5)D.(-∞,5]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=lg(-x2+4x-3)的定义域为M.
(1)求f(x)的定义域M;
(2)求当x∈M时,求函数g(x)=4x-a•2x+1(a为常数,且a∈R)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.直三棱柱ABC-A1B1C1的高为5,其中一个侧面的面积为10,另两个侧面面积之和为20.
(1)求该三棱柱的体积的最大值;
(2)当该三棱柱的体积取到最大值时,求三棱柱的表面积;
(3)当该三棱柱的体积取到最大值时,设O,O1分别为△ABC,△A1B1C1的重心,S在OO1上,点P为三棱锥S-ABC侧棱SA上的动点,若SA=4,求△PBC的周长的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设函数g(x)=3x,h(x)=9x
(1)解方程:h(x)-8g(x)-h(1)=0;
(2)令$p(x)=\frac{g(x)}{{g(x)+\sqrt{3}}}$,求$p(\frac{1}{2014})+p(\frac{2}{2014})+…+p(\frac{2012}{2014})+p(\frac{2013}{2014})$的值;
(3)若$f(x)=\frac{g(x+1)+a}{g(x)+b}$是实数集R上的奇函数,且f(h(x)-1)+f(2-k•g(x))>0对任意实数x恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知集合A={x|-2≤x≤17},B={x|2m+3≤x≤3m-1},若A∪B⊆A,求实数m的取值范围.

查看答案和解析>>

同步练习册答案