分析 根据正切函数的单调性进行求解即可.
解答 解:∵$\frac{π}{4}$≤x≤$\frac{π}{2}$,
∴$\frac{π}{2}$≤2x≤π,$\frac{π}{4}$≤2x-$\frac{π}{4}$≤$\frac{3π}{4}$,
∵x≠$\frac{3π}{8}$,∴2x-$\frac{π}{4}$≠$\frac{π}{2}$,
即$\frac{π}{4}$≤2x-$\frac{π}{4}$<$\frac{π}{2}$或$\frac{π}{2}$<x≤$\frac{3π}{4}$,
当$\frac{π}{4}$≤2x-$\frac{π}{4}$<$\frac{π}{2}$时,tan(2x-$\frac{π}{4}$)≥tan$\frac{π}{4}$=1,
当$\frac{π}{2}$<x≤$\frac{3π}{4}$时,tan(2x-$\frac{π}{4}$)≤tan$\frac{3π}{4}$=-1,
即y≥1或y≤-1,
即函数的值域为(-∞,-1]∪[1,+∞),
故答案为:(-∞,-1]∪[1,+∞).
点评 本题主要考查函数周期的求解,根据正切函数单调性的性质结合正切函数的图象是解决本题的关键.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 6+$\sqrt{3}$ | B. | 6-$\sqrt{3}$ | C. | 6+$\frac{\sqrt{42-24\sqrt{2}}}{2}$ | D. | 6-$\frac{\sqrt{42-24\sqrt{2}}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com