精英家教网 > 高中数学 > 题目详情
19.设曲线C:y=alnx(a≠0)在点T(x0,alnx0)处的切线与x轴交于点A(f(x0),0),函数g(x)=$\frac{2x}{1+x}$.
(1)求f(x0),并求出f(x)在(0,+∞)上的极值;
(2)设在区间(0,1)上,方程f(x)=k的实数解为x1,g(x)=k的实数解为x2,比较x2与x1的大小.

分析 (1)利用导数的几何意义求f(x0),取得函数的单调性,求出f(x)在(0,+∞)上的极值;
(2)作差,构造函数,确定函数值的范围,即可比较x2与x1的大小.

解答 解:(1)曲线C:y=alnx(a≠0)在点T(x0,alnx0)处的切线方程为y-alnx0=$\frac{a}{{x}_{0}}$(x-x0),
令y=0,可得x=x0-x0lnx0
∴f(x0)═x0-x0lnx0
故f(x)=x-xlnx,f′(x)=-lnx.
0<x<1时,f′(x)>0,f(x)在(0,1)上单调递增,x>1时,f′(x)<0,f(x)在(1,+∞)上单调递减,
∴x=1时,f(x)取得极大值f(1)=1,无极小值;
(2)由题意,f(x1)=k,g(x2)=k,∴$\frac{2{x}_{2}}{1+{x}_{2}}$=k,∴x2=$\frac{k}{2-k}$,
k=f(x1),代入,x2=$\frac{f({x}_{1})}{2-f({x}_{1})}$
∴x2-x1=$\frac{f({x}_{1})}{2-f({x}_{1})}$-x1=$\frac{{x}_{1}(1+{x}_{1})}{2-f({x}_{1})}$[(1-lnx1)-$\frac{2}{1+{x}_{1}}$],
∵x1∈(0,1),由(1)可知f(x1)<1,2-f(x1)>0,
∴$\frac{{x}_{1}(1+{x}_{1})}{2-f({x}_{1})}$>0.
令h(x)=1-lnx-$\frac{2}{1+x}$,h′(x)=-$\frac{1+{x}^{2}}{x(1+x)^{2}}$<0,
∴h(x)在(0,1)上单调递减,
∴h(x)>h(1)=0,
∴(1-lnx1)-$\frac{2}{1+{x}_{1}}$>0,
∴x2-x1>0,∴x2>x1

点评 本题考查导数的几何意义,考查函数的单调性与极值,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.设{an}是公比为q的等比数列,令bn=an+1(n∈N*),若数列{bn}的连续四项在集合{-15,-3,9,18,33}中,则q等于(  )
A.-4B.2C.-4或-$\frac{1}{4}$D.-2或-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知在多面体SP-ABCD中,底面ABCD为矩形,AB=PC=1,AD=AS=2,且AS∥CP且AS⊥面ABCD,E为BC的中点.
(1)求证:AE∥面SPD;
(2)求二面角B-PS-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若函数f(x)=xlnx-ax3+$\frac{1}{2}$x2-x存在极值,则实数a的取值范围是(  )
A.(-∞,$\frac{1}{3}$)B.(-∞,0]C.(-∞,1)D.(-$\frac{1}{3}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.函数f(x)=ex-$\frac{1}{x}$+2的零点所在的一个区间是(  )
A.(-1,0)B.(0,1)C.(1,2)D.(2,3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=ax2+lnx.
(1)当a=-$\frac{1}{2}$时,求函数f(x)在[$\frac{1}{e}$,e]的值域;
(2)求函数f(x)的单调区间;
(3)若函数f(x)在区间(1,2)上不单调,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在平面直角坐标系xoy中,直线$\left\{\begin{array}{l}x={x_0}+tcosα\\ y=tsinα\end{array}$,(t为参数)与抛物线y2=2px(p>0)相交于横坐标分别为x1,x2的A,B两点
(1)求证:x02=x1x2
(2)若OA⊥OB,求x0的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设函数f(x)=x2-aln(x+2),g(x)=xex,且f(x)存在两个极值点x1、x2,其中x1<x2
(1)求实数a的取值范围;
(2)求g(x1-x2)的最小值;
(3)证明不等式:f(x1)+x2>0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=ax-lnx.
(Ⅰ)讨论f(x)的单调区间;
(Ⅱ)若不等式f(x)>0恒成立,求a的取值范围.

查看答案和解析>>

同步练习册答案