精英家教网 > 高中数学 > 题目详情
7.若函数f(x)=xlnx-ax3+$\frac{1}{2}$x2-x存在极值,则实数a的取值范围是(  )
A.(-∞,$\frac{1}{3}$)B.(-∞,0]C.(-∞,1)D.(-$\frac{1}{3}$,+∞)

分析 f(x)=xlnx-ax3+$\frac{1}{2}$x2-x的导数为f′(x)=lnx-3ax2+x,若函数f(x)有极值,则f′(x)=0有解,即lnx-3ax2+x=0有解,可得y=lnx与y=3ax2-x在(0,+∞)上有交点,即可求出实数a的取值范围.

解答 解:f(x)=xlnx-ax3+$\frac{1}{2}$x2-x的导数为f′(x)=lnx-3ax2+x,
若函数f(x)有极值,则f′(x)=0有解,即lnx-3ax2+x=0有解,
∴y=lnx与y=3ax2-x在(0,+∞)上有交点,
a≤0时恒成立;a>0时,$\frac{1}{3a}$>1,∴0<a<$\frac{1}{3}$,
综上所述,a<$\frac{1}{3}$,
故选:A.

点评 本题主要考查了函数的导数与极值的关系,以及充要条件的判断,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.定积分${∫}_{-π}^{0}$(cosx+ex)dx的值为(  )
A.0B.1+$\frac{1}{{e}^{π}}$C.1+$\frac{1}{e}$D.1-$\frac{1}{{e}^{π}}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.下列命题中,正确的命题个数是(  )
①用相关系数r来判断两个变量的相关性时,r越接近0,说明两个变量有较强的相关性;
②将一组数据中的每个数据都加上同一个非零常数后,期望改变,方差不变;
③某厂生产的零件外直径x~N(3,1),且p(2≤x≤4)=0.68,则p(x<4)=0.84
④用数学归纳法证明不等式$\frac{1}{n+1}$+$\frac{1}{n+2}$+…+$\frac{1}{2n}$<$\frac{13}{14}$(n≥2,n∈{N*)的过程中,由n=k递推到n=k+1时不等式的左边增加项为$\frac{1}{2k+1}$-$\frac{1}{2k+2}$.
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知函数f(x)是定义在R上的偶函数,f(2)=0,$\frac{xf′(x)-f(x)}{{x}^{2}}$<0(x>0),则不等式xf(x)<0的解集(-2,0)∪(2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,⊙O的直径AB的延长线与弦CD的延长线相交于点P.
(Ⅰ)若PD=8,CD=1,PO=9,求⊙O的半径;
(Ⅱ)若E为⊙O上的一点,$\widehat{AE}=\widehat{AC}$,DE交AB于点F,求证:PF•PO=PA•PB.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.图,在四棱锥P-ABCD中,PD⊥平面ABCD,PA⊥PC,∠ADC=120°,底面ABCD为菱形,G为PC的中点,E,F分别为AB,PB上一点,AB=4AE=4$\sqrt{2}$,PB=4PF.
(1)求证:EF∥平面BDG;
(2)求二面角C-DF-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设曲线C:y=alnx(a≠0)在点T(x0,alnx0)处的切线与x轴交于点A(f(x0),0),函数g(x)=$\frac{2x}{1+x}$.
(1)求f(x0),并求出f(x)在(0,+∞)上的极值;
(2)设在区间(0,1)上,方程f(x)=k的实数解为x1,g(x)=k的实数解为x2,比较x2与x1的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,△CDE所在的平面与正方形ABCD所在的平面相交于CD,且AE⊥平面ABCD,AB=2AE=2.
(1)求证:平面ABCD⊥平面ADE
(2)设点F是棱BC的中点,求直线DF与平面CDE所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.将7个人(其中包括甲、乙、丙、丁4人)排成一排,若甲不能在排头,乙不能在排尾,丙、丁两人必须相邻,则不同的排法共有(  )
A.1108种B.1008种C.960种D.504种

查看答案和解析>>

同步练习册答案