精英家教网 > 高中数学 > 题目详情
已知直线l:x-y+4=0与圆C:(x-1)2+(y-1)2=2,则C上各点到l的距离的最小值为
 
分析:如图过点C作出CD与直线l垂直,垂足为D,与圆C交于点A,则AD为所求;求AD的方法是:由圆的方程找出圆心坐标与圆的半径,然后利用点到直线的距离公式求出圆心到直线l的距离d,利用d减去圆的半径r即为圆上的点到直线l的距离的最小值.
解答:精英家教网解:如图可知:过圆心作直线l:x-y+4=0的垂线,则AD长即为所求;
∵圆C:(x-1)2+(y-1)2=2的圆心为C(1,1),半径为
2

点C到直线l:x-y+4=0的距离为d=
|1-1+4|
2
=2
2

∴AD=CD-AC=2
2
-
2
=
2

故C上各点到l的距离的最小值为
2

故答案为:
2
点评:此题重点考查圆的标准方程和点到直线的距离.本题的突破点是数形结合,使用点C到直线l的距离距离公式.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知直线l:x-y+4=0与圆C:
x=1+2cosθ
y=1+2sinθ
,则C上各点到l的距离的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•广州一模)已知直线l:x+y=m经过原点,则直线l被圆x2+y2-2y=0截得的弦长是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l:x-y+4=0与圆C:x2+y2-2x-2y=0,则圆C上各点到l的距离的最小值为
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•河北区一模)已知椭圆C的方程为 
x2
a2
+
y2
b2
=1 
(a>b>0),过其左焦点F1(-1,0)斜率为1的直线交椭圆于P、Q两点.
(Ⅰ)若
OP
+
OQ
a
=(-3,1)共线,求椭圆C的方程;
(Ⅱ)已知直线l:x+y-
1
2
=0,在l上求一点M,使以椭圆的焦点为焦点且过M点的双曲线E的实轴最长,求点M的坐标和此双曲线E的方程.

查看答案和解析>>

同步练习册答案