精英家教网 > 高中数学 > 题目详情
函数f(x)=
lg(1-x2)
|x+3|-3
是(  )
分析:由题设条件可以看出,可以用函数奇偶性的定义对这个函数进行验证,以确定其性质.
解答:解:函数y=lg(1-x2)的定义域是使1-x2>0成立的x的范围,
而解1-x2>0得-1<x<1,故y=lg(x2-1)的定义域是(-1,1).
则函数f(x)=
lg(1-x2)
|x+3|-3
=
lg(1-x2)
x
的定义域是(-1,0)∪(0,1),
又由f(-x)=-
lg(1-x2)
x
=-f(x),
故函数f(x)=
lg(1-x2)
|x+3|-3
是奇函数.
故答案为:A
点评:本题考查函数奇偶性的判断,解答本题的关键是熟练用定义法判断函数的奇偶性.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数f(x)=lg(x2-5x+4)+x
32
的定义域为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=lg(cos2
x
2
-sin2
x
2
)
的定义域是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题:
(1)若函数f(x)=lg(x+
x2+a
)
为奇函数,则a=1;
(2)函数f(x)=|1+sinx+cosx|的周期T=2π;
(3)方程lgx=sinx有且只有三个实数根;
(4)对于函数f(x)=
x
,若0<x1<x2,则f(
x1+x2
2
)<
f(x1)+f(x2)
2

以上命题为真命题的是
(1)(2)(3)
(1)(2)(3)
.(将所有真命题的序号填在题中的横线上)

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=lg(x+1)+
4-x2
的定义域是
{x|-1<x≤2}
{x|-1<x≤2}

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lg(ax2-ax+
1a
)
值域为R,则实数a的取值范围是
[2,+∞)
[2,+∞)

查看答案和解析>>

同步练习册答案