精英家教网 > 高中数学 > 题目详情
0<a<
1
2
,则下列不等式中总成立的是(  )
分析:不妨令a=
1
3
,逐个分析,可排除B、C、D,从而得到答案.
解答:解:不妨令a=
1
3
,则0=log
1
3
1
log
1
3
(1-
1
3
)
=log
1
3
2
3
log
1
3
1
3
=1,log(1-a)a=log
2
3
1
3
log
2
3
2
3
=1,故A正确;
对于B,(
1
3
)
2
3
=
3
1
9
(
2
3
)
1
3
=
3
6
9
,显然前者小于后者,故B错误;
对于C,log
1
3
2
3
log
1
3
1
3
=1,故C错误;
对于D,(
2
3
)
n
(
1
3
)
n
(n∈N+),故D错误.
故选A.
点评:本题考查不等式比较大小,难点在于含参数的对数函数与指数函数的单调性质的综合分析与应用,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某学校课题小组为了研究学生的数学成绩与物理成绩之间的关系,随机抽取高二年级20名学生某次考试成绩(满分100分)如下表所示:
序号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
数学成绩 95 75 80 94 92 65 67 84 98 71 67 93 64 78 77 90 57 83 72 83
物理成绩 90 63 72 87 91 71 58 82 93 81 77 82 48 85 69 91 61 84 78 86
若单科成绩85分以上(含85分),则该科成绩为优秀.
(1)根据上表完成下面的2×2列联表(单位:人):
数学成绩优秀 数学成绩不优秀 合计
物理成绩优秀
物理成绩不优秀
合计 20
(2)根据题(1)中表格的数据计算,有多大的把握,认为学生的数学成绩与物理成绩之间有关系?
(3)若从这20个人中抽出1人来了解有关情况,求抽到的学生数学成绩与物理成绩至少有一门不优秀的概率.
参考数据:
①假设有两个分类变量X和Y,它们的值域分别为{x1,x2}和{y1,y2},其样本频数列联表(称为2×2列联表)为:
y1 y2 合计
x1 a b a+b
x2 c d c+d
合计 a+c b+d a+b+c+d
则随机变量K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d为样本容量;
②独立检验随机变量K2的临界值参考表:
P(K2≥k0 0.50 0.40 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k0 0.455 0.708 1.323 2.072 2.706 3.841 5.024 6.635 7.879 10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•东城区一模)设A是由n个有序实数构成的一个数组,记作:A=(a1,a2,…,ai,…,an).其中ai(i=1,2,…,n)称为数组A的“元”,S称为A的下标.如果数组S中的每个“元”都是来自 数组A中不同下标的“元”,则称A=(a1,a2,…,an)为B=(b1,b2,…bn)的子数组.定义两个数组A=(a1,a2,…,an),B=(b1,b2,…,bn)的关系数为C(A,B)=a1b1+a2b2+…+anbn
(Ⅰ)若A=(-
1
2
1
2
)
,B=(-1,1,2,3),设S是B的含有两个“元”的子数组,求C(A,S)的最大值;
(Ⅱ)若A=(
3
3
3
3
3
3
)
,B=(0,a,b,c),且a2+b2+c2=1,S为B的含有三个“元”的子数组,求C(A,S)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

某学校课题组为了研究学生的数学成绩与物理成绩之间的关系,随机抽取高二年级20名学生某次考试成绩(满分100分)如下表所示:
序号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
数学成绩 95 75 80 94 92 65 67 84 98 71 67 93 64 78 77 90 57 83 72 83
物理成绩 90 63 72 87 91 71 58 82 93 81 77 82 48 85 69 91 61 84 78 86
若单科成绩85分以上(含85分),则该科成绩为优秀.
(1)根据上表完成下面的2×2列联表(单位:人):
数学成绩优秀 数学成绩不优秀   合   计
物理成绩优秀
物理成绩不优秀
合   计 20
(2)根据题(1)中表格的数据计算,有多大的把握,认为学生的数学成绩与物理成绩之间有关系?
参考数据:
①假设有两个分类变量X和Y,它们的值域分别为{x1,x2}和y1,y2,其样本频数列联表(称为2×2列联表)为:
y1 y2 合计
x1 a b a+b
x2 c d c+d
合计 a+c b+d a+b+c+d
则随机变量K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d为样本容量;
②独立检验随机变量K2的临界值参考表:
P(K2≥k0 0.50 0.40 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k0 0.455 0.708 1.323 2.072 2.706 3.841 5.024 6.635 7.879 10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•东城区一模)设A是由n个有序实数构成的一个数组,记作:A=(a1,a2,…,ai,…,an).其中ai(i=1,2,…,n)称为数组A的“元”,S称为A的下标.如果数组S中的每个“元”都是来自 数组A中不同下标的“元”,则称A=(a1,a2,…,an)为B=(b1,b2,…bn)的子数组.定义两个数组A=(a1,a2,…,an),B=(b1,b2,…,bn)的关系数为C(A,B)=a1b1+a2b2+…+anbn
(Ⅰ)若A=(-
1
2
1
2
)
,B=(-1,1,2,3),设S是B的含有两个“元”的子数组,求C(A,S)的最大值;
(Ⅱ)若A=(
3
3
3
3
3
3
)
,B=(0,a,b,c),且a2+b2+c2=1,S为B的含有三个“元”的子数组,求C(A,S)的最大值;
(Ⅲ)若数组A=(a1,a2,a3)中的“元”满足a12+a22+a32=1.设数组Bm(m=1,2,3,…,n)含有四个“元”bm1,bm2,bm3,bm4,且bm12+bm22+bm32+bm42=m,求A与Bm的所有含有三个“元”的子数组的关系数C(A,Bm)(m=1,2,3,…,n)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

对于定义在D上的函数f(x),如果存在常数M和N,使得对于任意x∈D,都有M≤f(x)≤N成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的一个下界,N称为函数f(x)的一个上界.
(1)判断函数f(x)=log2x-x2在(0,+∞)上是否为有界函数,不必说明理由;
(2)判断函数f(x)=1+(
1
2
x+(
1
4
x在[0,+∞)上是否为有界函数,请说明理由
(3)若函数f(x)=1+a(
1
2
x+(
1
4
x在[0,+∞)上是有界函数,且3是f(x)的一个上界,-3是f(x)的一个下界,求实数a的取值范围.

查看答案和解析>>

同步练习册答案