精英家教网 > 高中数学 > 题目详情
如果直线y=kx+1与圆x2+y2+kx+my-4=0相交于M、N两点,且点M、N关于直线x+y=0对称,动点P(a,b)在不等式组
kx-y+2≥0
kx-my≤0
y≥0
表示的平面区域的内部及边界上运动,则
(1)不等式组所确定的平面区域的面积为1;
(2)使得目标函数z=b-a取得最大值的最优解有且仅有一个;
(3)目标函数ω=
b-2
a-1
的取值范围是[-2,2];
(4)目标函数p=a2+b2-2b+1的最小值是
1
2

上述说法中正确的是______(写出所有正确选项)

精英家教网
∵M、N两点,关于直线x+y=0对称,
∴k=1,又圆心(-
k
2
,-
m
2
)
在直线x+y=0上
-
k
2
-
m
2
=0

∴m=-1
∴原不等式组变为
x-y+2≥0
x+y≤0
y≥0
作出不等式组表示的平面区域,
(1)△AOB为不等式所表示的平面区域,
联立
y=-x
y=x+2
解得B(-1,1),A(-2,0),
所以S△AOB=
1
2
×|-2|×|-1|=1.
故(1)正确;
(2)作出目标函数z=b-a平行的直线,将其平移
当直线z=b-a过直线x-y+2=0上的任一点时,z最大,
故(2)错;
(3)如图
又因为ω=
b-2
a-1
表示点P(a,b)与点(1,2)连线的斜率.
故当过点B(-1,1)时,ω=
b-2
a-1
取最小值-
1
2

当过O(0,0)时,ω=
b-2
a-1
取最大值2.
故答案为:[-
1
2
,2].故(3)错;
(4)p=a2+b2-2b+1=a2+(b-1)2-表示区域内的点N到点M(0,1)的距离的平方,
由图得:只有当过M作直线x+y=0的垂线时,M(0,1)到平面区域内任一点的距离才最小.
而M与直线x+y=0的距离为:d=
|0+1|
12+12
=
1
2

∴|d|2=
1
2
.即目标函数p=a2+b2-2b+1的最小值是
1
2

故(4)正确.
故答案为:(1),(4).
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如果直线y=kx+1与圆x2+y2+kx+my-4=0交于M、N两点,且M、N关于直线x+y=0对称,则不等式组:
kx-y+1≥0
kx-my≤0
y≥0
表示的平面区域的面积是(  )
A、
1
4
B、
1
2
C、1
D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

如果直线y=kx+1与圆x2+y2+kx+my-4=0交于M、N两点,且M、N关于直线x+y=0对称,那么可求得圆心的横坐标为
 
,直线被圆所截得的弦MN的长度为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)我潜艇在海岛A南偏西
π6
,相距海岛12海里的B处,发现敌舰正由海岛A朝正东方向以10节的速度航行,我潜艇要用2小时追上敌舰,求我潜艇需要的速度大小(1节等于每小时 1海里);
(2)如果直线y=kx-1与双曲线x2-y2=1的右支有两个不同的公共点,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如果直线y=kx+1与圆x2+y2+kx+my-4=0交于M、N两点,且M、N关于直线x+y-1=0对称,则k-m的值为
4
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•东城区二模)已知椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的离心率e=
3
2
,原点到过点A(a,0),B(0,b)的直线的距离是
4
5
5

(1)求椭圆C的方程;
(2)若椭圆C上一动点P(x0,y0)关于直线y=2x的对称点为P1(x1,y1),求x12+y12的取值范围.
(3)如果直线y=kx+1(k≠0)交椭圆C于不同的两点E,F,且E,F都在以B为圆心的圆上,求k的值.

查看答案和解析>>

同步练习册答案