精英家教网 > 高中数学 > 题目详情
18.若P为△ABC内一点,且满足$\overrightarrow{PA}$+2$\overrightarrow{PB}$+3$\overrightarrow{PC}$=0,则△ABC的面积与△APC的面积之比为1:3.

分析 可延长PB到B′,延长PC到C′,并分别使PB′=2PB,PC′=3PC,从而根据条件便得到:$\overrightarrow{PA}+\overrightarrow{PB′}+\overrightarrow{PC′}=\overrightarrow{0}$,这便说明P为△AB′C′的重心.这便得到三角形PAB′,三角形PB′C′,及三角形PC′A的面积都相等,设为S,从而会得到S△ABC=S,${S}_{△APC}=\frac{1}{3}S$,这样便可求出△ABC的面积与△APC的面积之比.

解答 解:如图,延长PB至PB',使PB'=2PB,延长PC至PC',使PC'=3PC,并连接AB′,B′C′,C′A,则:

$\overrightarrow{PA}+2\overrightarrow{PB}+3\overrightarrow{PC}$=$\overrightarrow{PA}+\overrightarrow{PB′}+\overrightarrow{PC′}=\overrightarrow{0}$;
∴P是△AB′C′的重心;
∴△PAB′,△PB′C′,△PC′A三个三角形的面积相等,记为S;
∴${S}_{△APB}=\frac{S}{2},{S}_{△APC}=\frac{S}{3},{S}_{BPC}=\frac{S}{6}$;
∴${S}_{△ABC}=\frac{S}{2}+\frac{S}{3}+\frac{S}{6}=S$;
∴S△APC:S△ABC=1:3.
故答案为:1:3.

点评 考查向量数乘的几何意义,三角形重心和三顶点构成向量的和为零向量,以及三角形的面积公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.设f(x)为二次函数,且f(1)=1,对于任意x∈R都有f(x+1)-f(x)=-4x+1.
(1)求f(x)的解析式;
(2)设g(x)=f(x)-x-a,若不等式g(x)>0无解,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.如图所示,平面四边形ABCD中,AB=AC=BC=$\sqrt{3}$,CD=AD=1,已知$\overrightarrow{AE}$=$λ\overrightarrow{AC}$,$\overrightarrow{CF}$=λ$\overrightarrow{CB}$,λ∈(0,1),且存在实数t使$\overrightarrow{CE}$=t$\overrightarrow{CD}$+(1-t)$\overrightarrow{CF}$,则$\overrightarrow{EA}$•$\overrightarrow{AB}$=(  )
A.$\frac{\sqrt{3}}{2}$B.-$\frac{\sqrt{3}}{2}$C.-$\frac{3}{4}$D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若不等式|x-a|+|x-1|≤|x-3|解集的子集是[0,1],则实数a的取值范围是[-1,2].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在△ABC中,角A,B,C的对边分别是a,b,c,B=$\frac{π}{3}$,cosA=$\frac{4}{5}$,b=$\sqrt{3}$.
(1)求sinC的值;
(2)求$\overrightarrow{AB}•\overrightarrow{AC}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设数列{bn}、{cn},已知b1=3,c1=5,bn+1=$\frac{{c}_{n}+4}{2}$,cn+1=$\frac{{b}_{n}+4}{2}$(n∈N*).
(1)求证:对任意n∈N*,bn+cn为定值;
(2)设Sn为数列{cn}的前n项和,若对任意n∈N*,都有p•(Sn-4n)≤3,求实数p的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设f(x)=$\frac{x}{a(x+2)}$,且f(x)=x有唯一解,f(x1)=$\frac{1}{1003}$,xn+1=f(xn),求实数a.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在△ABC中,P为AB的中点,O在边AC上,且|$\overrightarrow{AO}$|=2|$\overrightarrow{OC}$|,BO∩CP=R,设$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AC}$=$\overrightarrow{b}$.
(1)试用$\overrightarrow{a}$,$\overrightarrow{b}$表示$\overrightarrow{AR}$;
(2)若H在BC上,且RH⊥BC,设|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=1,θ=<$\overrightarrow{a}$,$\overrightarrow{b}$>,若θ=[$\frac{π}{3}$,$\frac{2π}{3}$],求$\frac{|\overrightarrow{CH}|}{|\overrightarrow{CB}|}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.甲乙两人相约打靶,甲射击3次,每次射击的命中率为$\frac{1}{2}$,乙射击2次,每次射击的命中率为$\frac{2}{3}$,记甲命中的次数为x,乙命中的次数为y
(1)求x+y的分布列和E(x+y)
(2)猜想两个相互独立的变量x,y的期望与x+y的期望间的关系,并证明你的猜想.
其中,x的分布列为:
xx1x2xn
pp1p2pn
y的分布列为:
yy1y2ym
pp${\;}_{1}^{′}$p${\;}_{2}^{′}$p${\;}_{m}^{′}$

查看答案和解析>>

同步练习册答案