精英家教网 > 高中数学 > 题目详情
6.若不等式|x-a|+|x-1|≤|x-3|解集的子集是[0,1],则实数a的取值范围是[-1,2].

分析 由题意可得,不等式|x-a|+|x-1|≤|x-3|在[0,1]上恒成立,即 a-2≤x≤2+a在[0,1]上恒成立,可得 $\left\{\begin{array}{l}{a-2≤0}\\{a+2≥1}\end{array}\right.$,由此求得a的范围.

解答 解:由题意可得,不等式|x-a|+|x-1|≤|x-3|在[0,1]上恒成立,
即|x-a|+1-x≤3-x,即|x-a|≤2在[0,1]上恒成立,即-2≤x-a≤2在[0,1]上恒成立,
即 a-2≤x≤2+a在[0,1]上恒成立,∴$\left\{\begin{array}{l}{a-2≤0}\\{a+2≥1}\end{array}\right.$,求得-1≤a≤2,
故答案为:[-1,2].

点评 本题主要考查绝对值不等式的解法,函数的恒成立问题,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知集合P={x|$\frac{1}{2}≤x≤2$},函数f(x)=log2(ax2-2x+2)的定义域为Q,若P⊆Q,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若一系列函数的解析式相同,值域相同,但定义域不同,则称这些函数为“同族函数”,那么函数解析式为y=x2+2,值域为{2,6}的同族函数有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设向量$\overrightarrow{i}$=(1,0),$\overrightarrow{j}$=(0,1),动点P(x,y),记向量$\overrightarrow{a}$=(x+m)$\overrightarrow{i}$+y$\overrightarrow{j}$,$\overrightarrow{b}$=(x-m)$\overrightarrow{i}$+y$\overrightarrow{j}$,且|$\overrightarrow{a}$|+|$\overrightarrow{b}$|=6,这里m为常数,且0<m<3,x≥0,y∈R.
(1)求动点P(x,y)的轨迹方程;
(2)当m=2时,设Q(1,0),求|PQ|的最大值和最小值;
(3)已知点A(-1,0),直线l:y=$\frac{1}{3}$(x-1)与点P的轨迹交于M、N两点,问是否存在实数m,使得$\overrightarrow{AM}$•$\overrightarrow{AN}$=$\frac{26}{9}$?若存在,求出所有满足条件的m的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知$\overrightarrow{a}$=(1,1),$\overrightarrow{b}$=(0,-2),当k为何值时:
(1)k$\overrightarrow{a}$-$\overrightarrow{b}$与$\overrightarrow{a}$+$\overrightarrow{b}$共线;
(2)k$\overrightarrow{a}$-$\overrightarrow{b}$与$\overrightarrow{a}$+$\overrightarrow{b}$的夹角为120°;
(3)k$\overrightarrow{a}$-$\overrightarrow{b}$的模等于$\sqrt{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知A(1,0)、B(0,-1)、C(-1,2)、D(2,-1)、E(0,1)、F(2,1)、G(4,2)七个点,抛物线y=a(x-1)2+k(a≠0)经过其中的三个点.
(1)当a<0时,求a和k的值;
(2)判定C、G两点是否能同时在抛物线y=a(x-1)2+k(a≠0)上,若能,求出a和k的值;若不能,请说明理由;
(3)若抛物线经过七个点中的三个,直接写出所有满足这样的条件的抛物线条数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若P为△ABC内一点,且满足$\overrightarrow{PA}$+2$\overrightarrow{PB}$+3$\overrightarrow{PC}$=0,则△ABC的面积与△APC的面积之比为1:3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=$\sqrt{3}$sin2x+2cos2x+1.
(1)若tanα=$\frac{\sqrt{3}}{2}$,求函数值f(a);
(2)若x∈[0,$\frac{π}{2}$],求函数值f(x)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=exsinx,求函数f(x)的单调区间.

查看答案和解析>>

同步练习册答案