精英家教网 > 高中数学 > 题目详情
15.已知函数f(x)=$\sqrt{3}$sin2x+2cos2x+1.
(1)若tanα=$\frac{\sqrt{3}}{2}$,求函数值f(a);
(2)若x∈[0,$\frac{π}{2}$],求函数值f(x)的取值范围.

分析 (1)由三角函数中的恒等变换应用化简可得f(α)=$\sqrt{3}×$$\frac{2tanα}{1+ta{n}^{2}α}$+$\frac{1-ta{n}^{2}α}{1+ta{n}^{2}α}$+2,代入tanα=$\frac{\sqrt{3}}{2}$计算即可得解.
(2)化简还是解析式可得f(x)=2sin(2x+$\frac{π}{6}$)+2,由x∈[0,$\frac{π}{2}$],可求2x+$\frac{π}{6}$∈[$\frac{π}{6}$,$\frac{7π}{6}$],利用正弦函数的图象和性质即可求得f(x)的取值范围.

解答 解:(1)∵f(x)=$\sqrt{3}$sin2x+2cos2x+1=$\sqrt{3}$sin2x+cos2x+2,tanα=$\frac{\sqrt{3}}{2}$,
∴f(α)=$\sqrt{3}$sin2α+cos2α+2=$\sqrt{3}×$$\frac{2tanα}{1+ta{n}^{2}α}$+$\frac{1-ta{n}^{2}α}{1+ta{n}^{2}α}$+2=$\sqrt{3}×$$\frac{2×\frac{\sqrt{3}}{2}}{1+(\frac{\sqrt{3}}{2})^{2}}$+$\frac{1-(\frac{\sqrt{3}}{2})^{2}}{1+(\frac{\sqrt{3}}{2})^{2}}$+2=$\frac{27}{7}$;
(2)∵f(x)=$\sqrt{3}$sin2x+cos2x+2=2sin(2x+$\frac{π}{6}$)+2,x∈[0,$\frac{π}{2}$],
∴2x+$\frac{π}{6}$∈[$\frac{π}{6}$,$\frac{7π}{6}$],
∴sin(2x+$\frac{π}{6}$)∈[-$\frac{1}{2}$,1],
∴f(x)=2sin(2x+$\frac{π}{6}$)+2∈[1,4].

点评 本题主要考查了三角函数中的恒等变换应用,同角三角函数基本关系的运用,考查了计算求解能力,熟练掌握三角函数的相关公式是解题的关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.已知定义在R上的奇函数f(x)的周期为7,当$\frac{1}{2}<x<\frac{3}{2}$时,f(x)=x2+2x,则f(2015)的值为(  )
A.-$\frac{3}{2}$B.$\frac{3}{2}$C.-3D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若不等式|x-a|+|x-1|≤|x-3|解集的子集是[0,1],则实数a的取值范围是[-1,2].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设数列{bn}、{cn},已知b1=3,c1=5,bn+1=$\frac{{c}_{n}+4}{2}$,cn+1=$\frac{{b}_{n}+4}{2}$(n∈N*).
(1)求证:对任意n∈N*,bn+cn为定值;
(2)设Sn为数列{cn}的前n项和,若对任意n∈N*,都有p•(Sn-4n)≤3,求实数p的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设f(x)=$\frac{x}{a(x+2)}$,且f(x)=x有唯一解,f(x1)=$\frac{1}{1003}$,xn+1=f(xn),求实数a.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知g(x)=(sinωx+cosωx)2,h(x)=cos2(ωx+$\frac{π}{12}$),ω>0.函数f(x)=g(x)-2h(x)图象相邻对称轴之间的距离为$\frac{π}{2}$.
(1)求ω的值以及f(x)最大值;
(2)试作出函数y=f(x)在[0,π]上的图象;
(3)若h($\frac{α}{2}$)=$\frac{4}{5}$,α∈(-$\frac{π}{6}$,$\frac{π}{2}$),试求f(α+$\frac{π}{4}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在△ABC中,P为AB的中点,O在边AC上,且|$\overrightarrow{AO}$|=2|$\overrightarrow{OC}$|,BO∩CP=R,设$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AC}$=$\overrightarrow{b}$.
(1)试用$\overrightarrow{a}$,$\overrightarrow{b}$表示$\overrightarrow{AR}$;
(2)若H在BC上,且RH⊥BC,设|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=1,θ=<$\overrightarrow{a}$,$\overrightarrow{b}$>,若θ=[$\frac{π}{3}$,$\frac{2π}{3}$],求$\frac{|\overrightarrow{CH}|}{|\overrightarrow{CB}|}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若tanα=2tan$\frac{π}{5}$,则$\frac{cos(α-\frac{3π}{10})}{sin(α-\frac{π}{5})}$=3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.抛掷一枚均匀的骰子所得的样本空间为Ω={1,2,3,4,5,6},令事件A={2,3,5},B={1,2,4,5,6},则P(A|B)等于(  )
A.$\frac{2}{5}$B.$\frac{1}{2}$C.$\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

同步练习册答案