(满分14分)已知不等式的解集为A,不等式的解集为B。
(1)求A∩B;
(2)若不等式的解集为A∩B,求不等式的解集。
科目:高中数学 来源: 题型:
(本小题满分14分)已知函数满足当,当的最大值为。
(1)求时函数的解析式;
(2)是否存在实数使得不等式对于若存在,求出实数 的取值集合,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源:2011届江西省临川二中高三第二学期第一次模拟考试理科数学 题型:解答题
(本小题满分14分)
已知函数,当时,取得极小值.
(1)求,的值;
(2)设直线,曲线.若直线与曲线同时满足下列两个条件:
①直线与曲线相切且至少有两个切点;
②对任意都有.则称直线为曲线的“上夹线”.
试证明:直线是曲线的“上夹线”.
(3)记,设是方程的实数根,若对于定义域中任意的、,当,且时,问是否存在一个最小的正整数,使得恒成立,若存在请求出的值;若不存在请说明理由.
查看答案和解析>>
科目:高中数学 来源:2011届广东省高三高考全真模拟试卷数学理卷二 题型:解答题
(本小题满分14分)已知圆:及定点,点是圆上的动点,点在上,点在上,
且满足=2,·=.
(1)若,求点的轨迹的方程;
(2)若动圆和(1)中所求轨迹相交于不同两点,是否存在一组正实数,使得直线垂直平分线段,若存在,求出这组正实数;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源:2014届福建省高二上学期期中考试理科数学试卷(解析版) 题型:解答题
(本小题满分14分)
已知函数.
(Ⅰ)求的值;
(Ⅱ)若数列 ,
求数列的通项公式;
(Ⅲ)若数列满足,是数列的前项和,是否存在正实数,使不等式对于一切的恒成立?若存在,请求出的取值范围;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源:2010年福建省四地六校高二下学期第二次联考数学(理科)试题 题型:解答题
(本小题满分14分)
已知函数,,它们的定义域都是,其中,
(Ⅰ)当时,求函数的单调区间;
(Ⅱ)当时,对任意,求证:
(Ⅲ)令,问是否存在实数使得的最小值是3,如果存在,求出的值;如果不存在,说明理由。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com