精英家教网 > 高中数学 > 题目详情

已知椭圆的左右焦点分别为,短轴两个端点为,且四边形是边长为2的正方形。

(1)求椭圆方程;   (2)若分别是椭圆长轴的左右端点,动点满足,连接,交椭圆于点。证明:为定值;

(3)在(2)的条件下,试问轴上是否存在异于点的定点,使得以为直径的圆恒过直线的交点,若存在,求出点的坐标;若不存在,请说明理由。

解:(1)椭圆方程为

 (2),设,则

直线,即

代入椭圆

(3)设存在满足条件,则

,则由

得  ,从而得

存在满足条件。

练习册系列答案
相关习题

科目:高中数学 来源:2012-2013学年安徽省高三第一次月考理科数学试卷(解析版) 题型:解答题

已知椭圆的左右焦点分别是,直线与椭圆交于两点.当时,M恰为椭圆的上顶点,此时△的周长为6.

(Ⅰ)求椭圆的方程;

(Ⅱ)设椭圆的左顶点为A,直线与直线分别相交于点,问当

变化时,以线段为直径的圆被轴截得的弦长是否为定值?若是,求出这个定值,

若不是,说明理由.

 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆数学公式的左右焦点分别是F1,F2,过右焦点F2且斜率为k的直线与椭圆交于A,B两点.
(1)若k=1,求|AB|的长度、△ABF1的周长;
(2)若数学公式,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的左右焦点分别是,直线与椭圆交于两点且当时,M是椭圆的上顶点,且△的周长为6.

(1)求椭圆的方程;

(2)设椭圆的左顶点为A,直线与直线:

分别相交于点,问当变化时,以线段为直径的圆

轴截得的弦长是否为定值?若是,求出这个定值,若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的左右焦点分别是,直线与椭圆交于两点且当时,M是椭圆的上顶点,且△的周长为6.

(1)求椭圆的方程;

(2)设椭圆的左顶点为A,直线与直线:

分别相交于点,问当变化时,以线段为直径的圆

轴截得的弦长是否为定值?若是,求出这个定值,若不是,

说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的左右焦点分别是,直线与椭圆交于两点且当时,M是椭圆的上顶点,且△的周长为6.

(1)求椭圆的方程;

(2)设椭圆的左顶点为A,直线与直线:

分别相交于点,问当变化时,以线段为直径的圆

轴截得的弦长是否为定值?若是,求出这个定值,若不是,说明理由.

查看答案和解析>>

同步练习册答案