精英家教网 > 高中数学 > 题目详情

曲线y=Inx在点(e,f(e))处的切线方程是


  1. A.
    x-ey=0
  2. B.
    x+ey=0
  3. C.
    x+ey-2e=0
  4. D.
    x-ey+2=0
A
分析:先求出切点坐标和函数y=lnx的导函数,然后求出在x=e处的导数,从而求出切线的斜率,利用点斜式方程求出切线方程,化成一般式即可.
解答:∵f(x)=lnx
∴f(e)=lne=1则切点坐标为(e,1)
∵f'(x)=
∴f'(e)=则切线的斜率为
∴曲线y=Inx在点(e,f(e))处的切线方程是y-1=(x-e)即x-ey=0
故选A.
点评:本题主要考查了利用导数研究曲线上某点切线方程,以及直线方程,同时考查运算求解能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

定义:已知函数f(x)与g(x),若存在一条直线y=kx+b,使得对公共定义域内的任意实数均满足g(x)≤f(x)≤kx+b恒成立,其中等号在公共点处成立,则称直线y=kx+b为曲线f(x)与g(x)的“左同旁切线”.已知f(x)=Inx,g(x)=1-
1
x

(I)证明:直线y=x-l是f(x)与g(x)的“左同旁切线”;
(Ⅱ)设P(x1,f(x1)),Q(x2,f(x2))是函数 f(x)图象上任意两点,且0<x1<x2,若存在实数x3>0,使得f′(x3)=
f(x2)-f(x1)
x2-x1
.请结合(I)中的结论证明x1<x3<x2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

定义:已知函数f(x)与g(x),若存在一条直线y=kx+b,使得对公共定义域内的任意实数均满足g(x)≤f(x)≤kx+b恒成立,其中等号在公共点处成立,则称直线y=kx+b为曲线f(x)与g(x)的“左同旁切线”.已知f(x)=Inx,g(x)=1-数学公式
(I)证明:直线y=x-l是f(x)与g(x)的“左同旁切线”;
(Ⅱ)设P(x1,f(x1)),Q(x2,f(x2))是函数 f(x)图象上任意两点,且0<x1<x2,若存在实数x3>0,使得f′(x3)=数学公式.请结合(I)中的结论证明x1<x3<x2

查看答案和解析>>

科目:高中数学 来源:2002-2013学年江苏省泰州二中高二(下)期中数学试卷(理科)(解析版) 题型:解答题

定义:已知函数f(x)与g(x),若存在一条直线y=kx+b,使得对公共定义域内的任意实数均满足g(x)≤f(x)≤kx+b恒成立,其中等号在公共点处成立,则称直线y=kx+b为曲线f(x)与g(x)的“左同旁切线”.已知f(x)=Inx,g(x)=1-
(I)证明:直线y=x-l是f(x)与g(x)的“左同旁切线”;
(Ⅱ)设P(x1,f(x1)),Q(x2,f(x2))是函数 f(x)图象上任意两点,且0<x1<x2,若存在实数x3>0,使得f′(x3)=.请结合(I)中的结论证明x1<x3<x2

查看答案和解析>>

同步练习册答案