¶¨Ò壺ÒÑÖªº¯Êýf£¨x£©Óëg£¨x£©£¬Èô´æÔÚÒ»ÌõÖ±Ïßy=kx+b£¬Ê¹µÃ¶Ô¹«¹²¶¨ÒåÓòÄÚµÄÈÎÒâʵÊý¾ùÂú×ãg£¨x£©¡Üf£¨x£©¡Ükx+bºã³ÉÁ¢£¬ÆäÖеȺÅÔÚ¹«¹²µã´¦³ÉÁ¢£¬Ôò³ÆÖ±Ïßy=kx+bΪÇúÏßf£¨x£©Óëg£¨x£©µÄ¡°×óͬÅÔÇÐÏß¡±£®ÒÑÖªf£¨x£©=Inx£¬g£¨x£©=1-
1
x

£¨I£©Ö¤Ã÷£ºÖ±Ïßy=x-lÊÇf£¨x£©Óëg£¨x£©µÄ¡°×óͬÅÔÇÐÏß¡±£»
£¨¢ò£©ÉèP£¨x1£¬f£¨x1£©£©£¬Q£¨x2£¬f£¨x2£©£©ÊǺ¯Êý f£¨x£©Í¼ÏóÉÏÈÎÒâÁ½µã£¬ÇÒ0£¼x1£¼x2£¬Èô´æÔÚʵÊýx3£¾0£¬Ê¹µÃf¡ä£¨x3£©=
f(x2)-f(x1)
x2-x1
£®Çë½áºÏ£¨I£©ÖеĽáÂÛÖ¤Ã÷x1£¼x3£¼x2£®
·ÖÎö£º£¨I£©ÓÉÌâÒâÖªf£¨x£©Óëg£¨x£©ÔÚ¹«¹²µã´¦µÄÇÐÏß·½³ÌΪy=x-1£¬ÓûÖ¤y=x-1¾ÍÊÇ×óͬÅÔÇÐÏß·½³Ì£¬¼´Ö¤1-
1
x
¡Ülnx¡Üx-1£¨x£¾0£©£¬ÏÂÃæͨ¹ý¹¹Ô캯ÊýÀûÓõ¼ÊýÑо¿Æä×îÖµ¼´¿ÉÖ¤³ö½á¹û£»
£¨II£©ÀûÓ÷´Ö¤·¨½øÐÐÖ¤Ã÷£¬Áîx3¡Üx1£¬Ôòx3=
x2-x1
ln
x2
x1
¡Üx1£¬´Ó¶ø¿ÉµÃx2-x1¡Üx1ln
x2
x1
£¼x1£¨
x2
x1
-1£©=x2-x1£¬Óɴ˵ÃÖ¤£®
½â´ð£º½â£º£¨I£©ÓûÖ¤y=x-1¾ÍÊÇ×óͬÅÔÇÐÏß·½³Ì£¬¼´Ö¤1-
1
x
¡Ülnx¡Üx-1£¨x£¾0£©£®
Ïȹ¹Ô캯Êýh£¨x£©=lnx-x+1£¨x£¾0£©£¬Ôòh'£¨x£©=
1
x
-1=
1-x
x
£¬
Áîh'£¨x£©£¾0¿ÉµÃ0£¼x£¼1£¬h'£¨x£©£¼0¿ÉµÃx£¼0»òx£¾1£¬
¡àº¯ÊýÔÚx=1´¦h£¨x£©È¡µÃ×î´óÖµh£¨1£©=0£¬ËùÒÔlnx-x+1¡Ü0£¬¼´lnx¡Üx-1£¨x£¾0£©£®£¨4·Ö£©
ÔÙ¹¹Ô캯Êý¦Õ£¨x£©=lnx-1+
1
x
£¨x£¾0£©£¬Ôò¦Õ¡ä£¨x£©=
x-1
x2
£¬
Áî¦Õ'£¨x£©£¾0¿ÉµÃx£¾1£¬¦Õ'£¨x£©£¼0¿ÉµÃx£¼1£¬
¡àÔÚx=1´¦¦Õ£¨x£©È¡µÃ×îСֵ¦Õ£¨1£©=0£¬ËùÒÔlnx-1+
1
x
¡Ý0£¬¼´lnx¡Ý1-
1
x
£¨x£¾0£©£®
¹Ê¶ÔÈÎÒâx¡Ê£¨0£¬+¡Þ£©£¬ºãÓÐ1-
1
x
¡Ülnx¡Üx-1£¨x£¾0£©³ÉÁ¢£¬
¼´y=x-1¾ÍÊÇ×óͬÅÔÇÐÏß·½³Ì£®£¨6·Ö£©
£¨II£©ÒòΪf¡ä£¨x£©=
1
x
£¬ËùÒÔf¡ä£¨x3£©=
1
x3
=
lnx2-lnx1
x2-x1
=
ln
x2
x1
x2-x1
£¬ËùÒÔx3=
x2-x1
ln
x2
x1
£®
Áîx3¡Üx1£¬Ôòx3=
x2-x1
ln
x2
x1
¡Üx1£¬
¡àx2-x1¡Üx1ln
x2
x1
£¼x1£¨
x2
x1
-1£©=x2-x1£¬
ÏÔÈ»×ÔÏàì¶Ü£¬¹Êx1£¼x3£»Í¬Àí¿ÉÖ¤x3£¼x2£®
¹Êx1£¼x3£¼x2£®£¨12·Ö£©
µãÆÀ£º±¾Ì⿼²éµ¼Êý֪ʶµÄÔËÓ㬿¼²éж¨Ò壬¿¼²éº¯ÊýµÄ×îÖµ£¬ÕýÈ·Àí½âж¨ÒåÊǹؼü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¶¨Ò壺ÒÑÖªº¯Êýf£¨x£©ÔÚ[m£¬n]£¨m£¼n£©ÉϵÄ×îСֵΪt£¬Èôt¡Ümºã³ÉÁ¢£¬Ôò³Æº¯Êýf£¨x£©ÔÚ[m£¬n]£¨m£¼n£©ÉϾßÓС°DK¡±ÐÔÖÊ£®ÒÑÖªf£¨x£©=ax2-|x|+2a-1
£¨1£©Èôa=1£¬ÅжϺ¯Êýf£¨x£©ÔÚ[1£¬2]ÉÏÊÇ·ñ¾ßÓС°DK¡±ÐÔÖÊ£¬ËµÃ÷ÀíÓÉ£®
£¨2£©Èôf£¨x£©ÔÚ[1£¬2]ÉϾßÓС°DK¡±ÐÔÖÊ£¬ÇóaµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¶¨Ò壺ÒÑÖªº¯Êýf£¨x£©Óëg£¨x£©£¬Èô´æÔÚÒ»ÌõÖ±Ïßy=kx+b£¬Ê¹µÃ¶Ô¹«¹²¶¨ÒåÓòÄÚµÄÈÎÒâʵÊý¾ùÂú×ãf£¨x£©¡Üg£¨x£©¡Ükx+bºã³ÉÁ¢£¬ÆäÖеȺÅÔÚ¹«¹²µã´¦³ÉÁ¢£¬Ôò³ÆÖ±Ïßy=kx+bΪÇúÏßf£¨x£©Óëg£¨x£©µÄ¡°×óͬÅÔÇÐÏß¡±£®ÒÑÖªf£¨x£©=lnx£¬g£¨x£©=1-
1
x
£®
£¨1£©ÊÔ̽Çóf£¨x£©Óëg£¨x£©ÊÇ·ñ´æÔÚ¡°×óͬÅÔÇÐÏß¡±£¬Èô´æÔÚ£¬ÇëÇó³ö×óͬÅÔÇÐÏß·½³Ì£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
£¨2£©ÉèP£¨x1£¬f£¨x1£©£©£¬Q£¨x2£¬f£¨x2£©£©ÊǺ¯Êýf£¨x£©Í¼ÏóÉÏÈÎÒâÁ½µã£¬0£¼x1£¼x2£¬ÇÒ´æÔÚʵÊýx3£¾0£¬Ê¹µÃf£¨x3£©=
f(x2)-f(x1)
x2-x1
£¬Ö¤Ã÷£ºx1£¼x3£¼x2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2012-2013ѧÄê¹ã¶«Ê¡ÔƸ¡ÊиßÒ»£¨ÉÏ£©12ÔÂÔ¿¼ÊýѧÊÔ¾í£¨½âÎö°æ£© ÌâÐÍ£ºÌî¿ÕÌâ

¶¨ÒåÔËËãÒÑÖªº¯Êýf£¨x£©=x2¨’x£¬Çóf£¨2£©=    £®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2011-2012ѧÄêºÓÄÏÊ¡Ô¥¶«¡¢Ô¥±±Ê®ËùÃûУ¸ßÈý²âÊÔÀí¿ÆÊýѧÊÔ¾í£¨½âÎö°æ£© ÌâÐÍ£º½â´ðÌâ

¶¨Ò壺ÒÑÖªº¯Êýf£¨x£©Óëg£¨x£©£¬Èô´æÔÚÒ»ÌõÖ±Ïßy=kx +b£¬Ê¹µÃ¶Ô¹«¹²¶¨ÒåÓòÄÚµÄÈÎÒâʵÊý¾ùÂú×ãg£¨x£©¡Üf£¨x£©¡Ükx+bºã³ÉÁ¢£¬ÆäÖеȺÅÔÚ¹«¹²µã´¦³ÉÁ¢£¬Ôò³ÆÖ±Ïßy=kx +bΪÇúÏßf£¨x£©Óëg£¨x£©µÄ¡°×óͬÅÔÇÐÏß¡±£®ÒÑÖª

    £¨I£©Ö¤Ã÷£ºÖ±Ïßy=x-lÊÇf£¨x£©Óëg£¨x£©µÄ¡°×óͬÅÔÇÐÏß¡±£»

    £¨¢ò£©ÉèP£¨ÊǺ¯Êý f£¨x£©Í¼ÏóÉÏÈÎÒâÁ½µã£¬ÇÒ0<x1<x2£¬Èô´æÔÚʵÊýx3>0£¬Ê¹µÃ£®Çë½áºÏ£¨I£©ÖеĽáÂÛÖ¤Ã÷£º

 

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸