精英家教网 > 高中数学 > 题目详情
设函数f(x)=
a
b
a
=(2cosx,1),
b
=(cosx,
3
sin2x

(1)求f(x)最小值;
(2)若在△ABC中,满足f(A)=2,a=2,且acosB+bcosA=csinC,求S△ABC
分析:(1)由题意结合数量积和三角函数的运算可得可得f(x)解析式,可得其最小值;(2)由(1)结合已知可得A值,再结合正弦定理可得sinC的式子,可得C值,再由三角形的内角和可得B,由a可得b,代入面积公式计算可得.
解答:解:(1)由题意可得f(x)=
a
b
=2cos2x+
3
sin2x
=1+cos2x+
3
sin2x
=1+2sin(2x+
π
6
),
∴当sin(2x+
π
6
)=-1时,f(x)取最小值-1;
(2)由(1)知f(A)=1+2sin(2A+
π
6
)=2,
化简可得sin(2A+
π
6
)=
1
2

∵0<A<π,
π
6
<2A+
π
6
13π
6

∴2A+
π
6
=
6
,解得A=
π
3

又∵acosB+bcosA=csinC,结合正弦定理可得sinAcosB+sinBcosA=sin2C,
由两角和的正弦公式可得sin(A+B)=sin2C,即sinC=sin2C,
∵0<C<π,
∴sinC≠0,∴sinC=1,∴C=
π
2

∴B=
π
6
,在RT△ABC中,a=2,b=
2
3
3

∴S△ABC=
1
2
ab
=
2
3
3
点评:本题考查平面向量数量积的运算,涉及正弦定理的应用,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=A+Bsinx,若B<0时,f(x)的最大值是
3
2
,最小值是-
1
2
,则A=
 
,B=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
a
b
其中向量
a
=(2cosx,1),b=(cosx,
3
sin2x+m)

(1)求函数f(x)的最小正周期和在[0,π]上的单调递增区间;
(2)当x∈[0,
π
6
]
时,f(x)的最大值为4,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=a+bcosx+csinx的图象过点(0,1)和点(
π
2
,1)
,当x∈[0,
π
2
]
时,|f(x)|<2,则实数a的取值范围是(  )
A、-
2
<a≤1
B、1≤a<4+3
2
C、-
2
<a<4+3
2
D、-a<a<2

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
a
b
,其中向量
a
=(2cosx,1),
b
=(cosx,-1)(x∈R).
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)在△ABC中,角A、B、C所对的边分别为a、b、c,若f(A)=-
1
2
,且a=
3
,b+c=3,(b>c),求b与c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(sinωx+cosωx,sinωx)
b
=(sinωx-cosωx,2
3
cosωx),设函数f(x)=
a
b
(x∈R)的图象关于直线x=
π
3
对称,其中常数ω∈(0,2)
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)将函数f(x)的图象向左平移
π
12
个单位,得到函数g(x)的图象,用五点法作出函数g(x)在区间[-
π
2
π
2
]的图象.

查看答案和解析>>

同步练习册答案