精英家教网 > 高中数学 > 题目详情

【题目】已知函数

(1)若为曲线的一条切线,求a的值;

(2)已知,若存在唯一的整数,使得,求a的取值范围.

【答案】1;(2

【解析】

试题(1)先求出,设出切点,利用切线方程求得,进而求得的值;(2)问题转化为存在唯一的整数,使的最小值小于零,利用导数求其极值,数形结合可得 ,且,即可得的取值范围.

试题解析:

1)函数的定义域为

设切点,则切线的斜率

所以切线为

因为恒过点,斜率为,且为的一条切线,

所以

所以,所以

2)令

时,

上递增,

,又

则存在唯一的整数使得,即

时,为满足题意,上不存在整数使

上不存在整数使

时,

上递减,

时,

时,,不符合题意.

综上所述,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,四棱锥C的底面是正方形,PA⊥平面ABCD,PA=2,∠PDA=45°,点E、F分别为棱AB、PD的中点.

(1)求证:AF∥平面PEC

(2)求证:平面PCD⊥平面PEC;

(3)求三棱锥C-BEP的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】科研人员在对人体脂肪含量和年龄之间关系的研究中,获得了一些年龄和脂肪含量的简单随机样本数据,如下表:

根据上表的数据得到如下的散点图.

(1)根据上表中的样本数据及其散点图:

(i)求;

(ii)计算样本相关系数(精确到0.01),并刻画它们的相关程度.

(2)若y关于x的线性回归方程为,求的值(精确到0.01),并根据回归方程估计年龄为50岁时人体的脂肪含量。

附:参考数据:

参考公式:相关系数

回归方程中斜率和截距的最小二乘估计公式分别为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】部分与整体以某种相似的方式呈现称为分形.谢尔宾斯基三角形是一种分形,由波兰数学家谢尔宾斯基1915年提出.具体操作是取一个实心三角形,沿三角形的三边中点连线,将它分成4个小三角形,去掉中间的那一个小三角形后,对其余3个小三角形重复上述过程逐次得到各个图形,如图.

现在上述图(3)中随机选取一个点,则此点取自阴影部分的概率为_________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥为等边三角形,平面平面中点.

(1)求证:平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)当时,求函数的单调区间;

2)若恒成立,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆是长轴的一个端点,弦过椭圆的中心O,点C在第一象限,且.

1)求椭圆的标准方程;

2)设PQ为椭圆上不重合的两点且异于AB,若的平分线总是垂直于x轴,问是否存在实数,使得?若不存在,请说明理由;若存在,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列四个说法,其中正确的是( )

A.命题“若,则”的否命题是“若,则

B.”是“双曲线的离心率大于”的充要条件

C.命题“”的否定是“

D.命题“在中,若,则是锐角三角形”的逆否命题是假命题

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若无穷数列满足:对任意两个正整数,至少有一个成立,则称这个数列为“和谐数列”.

(Ⅰ)求证:若数列为等差数列,则为“和谐数列”;

(Ⅱ)求证:若数列为“和谐数列”,则数列从第项起为等差数列;

(Ⅲ)若是各项均为整数的“和谐数列”,满足,且存在使得,求p的所有可能值.

查看答案和解析>>

同步练习册答案