精英家教网 > 高中数学 > 题目详情
如图,在直三棱柱A1B1C1-ABC中,AB⊥AC,AB=AC=2,AA1=4,点D是BC的中点.
(Ⅰ)求证:A1B∥平面ADC1
(Ⅱ)求平面ADC1与ABA1所成二面角的平面角的正弦值.
考点:二面角的平面角及求法,直线与平面平行的判定
专题:综合题,空间位置关系与距离,空间角
分析:(Ⅰ)连接A1C,交C1A于E,证明:DE∥A1B,即可证明A1B∥平面ADC1
(Ⅱ)建立空间直角坐标系,求出平面ABA1的一个法向量、平面ADC1的法向量,利用向量的夹角公式,即可求平面ADC1与ABA1所成二面角的平面角的正弦值.
解答: (Ⅰ)证明:连接A1C,交C1A于E,则E为A1C的中点,又点D是BC的中点,
所以DE∥A1B,…(3分)
又DE?平面ADC1,A1B?平面ADC1,故A1B∥平面ADC1.          …(5分)
(Ⅱ)解:如图建立空间直角坐标系A-xyz,

则A(0,0,0),C(0,2,0),D(1,1,0),C1(0,2,4),…(6分)
AC
=(0,2,0)是平面ABA1的一个法向量,…(7分)
设平面ADC1的法向量
m
=(x,y,z).
AD
=(1,1,0),
AC1
=(0,2,4),
x+y=0
2y+4z=0

取z=1,得y=-2,x=2
∴平面ADC1的法向量
m
=(2,-2,1),…(9分)
平面ADC1与ABA1所成的二面角为θ,
∴|cosθ|=|
-4
2×3
|=
2
3
.…(11分)
从而sinθ=
5
3
,即平面ADC1与ABA1所成二面角的正弦值为
5
3
  …(13分)
点评:本题考查线面平行,考查平面ADC1与ABA1所成二面角的正弦值,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,∠ACB=2∠ABC,AF、CF分别是△ABC的外角平分线,连接BF,若
AB
AC
=
8
5
,则tan∠AFB的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=cosxsin(x+
π
3
)-3cos2x+
3
4
,求f(x)的最小正周期.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
4
+
y2
3
=1
的左顶点为A1,右焦点为F2,点P为椭圆上的一点,则当
PA1
PF2
取最小值时,求|
PA1
+
PF2
|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在正方体中,A、B为正方体的两个顶点,M、N、P为所在棱的中点,则异面直线MP、AB在正方体的正视图中的位置关系是(  )
A、相交B、平行C、异面D、不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F(x)=f(x)-g(x),其中f(x)=2loga(4-x)(a>0且a≠1),并且当且仅当点P(x0,y0)在f(x)的图象上时,点Q(-
1
5
x0
1
2
y0)在y=g(x)的图象上.
(1)求y=g(x)的解析式;
(2)解关于x的不等式F(x)≥0.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,三棱柱ABC-A1B1C1中,侧棱AA⊥底面ABC,且侧棱和底面边长均为2,D是BC的中点
(1)求证:AD⊥平面BB1CC1
(2)求证:A1B∥平面ADC1
(3)求三棱锥C1-ADB1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

某次有1000人参加数学摸底考试,其成绩的频率分布直方图如题(16)图所示,规定85分及以上为优秀.
(1)下表是这次考试成绩的频数分布表,求正整数a,b的值;
区间[75,80)[80,85)[85,90)[90,95)[95,100]
人数50a350300b
(2)某文科班数学老师抽取10名同学的数学成绩对该科进行抽样分析,得到第i个同学每天花在数学上的学习时间xi(单位:小时)与数学考试成绩yi(单位:百分)的数据资料,算得
10
i=1
xi=15,
10
i=1
yi=10,
10
i=1
xiyi=16,
10
i=1
x_2 
=25,求数学考试成绩y对每天花在数学上的学习时间x的线性回归方程
y
=bx+a;
附:线性回归方程y=bx+a中,b=
n
i=1
xiyi-n
.
x
.
y
n
i=1
x
2
i
-n\mathopxlimits-2
,a=
.
y
-b
.
x

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合S={x|(x+2)(x-5)<0},P={x|a+1<x<2a+15},若S∪P=P,求实数a的取值范围.

查看答案和解析>>

同步练习册答案