精英家教网 > 高中数学 > 题目详情
18.已知样本:4、2、1、0、-2,则该样本的标准差为(  )
A.$\sqrt{2}$B.2C.4D.$2\sqrt{2}$

分析 求出样本:4、2、1、0、-2的平均数,再求出该样本的方差,由此能求出该样本的标准差.

解答 解:样本:4、2、1、0、-2的平均数为:
$\overline{x}$=$\frac{1}{5}$(4+2+1+0-2)=1,
∴该样本的方差:S2=$\frac{1}{5}$[(4-1)2+(2-1)2+(1-1)2+(0-1)2+(-2-1)2]=4,
∴该样本的标准差S=2.
故选:B.

点评 本题考查样本标准差的求法,是基础题,解题时要认真审题,注意方差公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知向量$\overrightarrow a$=($\sqrt{3}$sinx,cosx),$\overrightarrow b$=(cosx,-cosx),f(x)=$\overrightarrow a$•$\overrightarrow b$,
(1)求f(x)的最小正周期和单调递增区间;
(2)若x∈($\frac{7π}{12},\frac{5π}{6}$),$\overrightarrow a•\overrightarrow b$=$-\frac{5}{4}$,求cos2x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知圆台的下底面周长是上底面周长的3倍,母线长为3,且圆台的侧面积为12π,则该圆台的体积为(  )
A.$\frac{{13\sqrt{5}}}{3}π$B.13πC.$\frac{{13\sqrt{3}}}{3}π$D.$13\sqrt{5}π$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知点P(t,t),点M是圆O1:x2+(y-1)2=$\frac{1}{4}$上的动点,点N是圆O2:(x-2)2+y2=$\frac{1}{4}$上的动点,则|PN|-|PM|的最大值是(  )
A.1B.$\sqrt{5}$-2C.2+$\sqrt{5}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知向量$\overrightarrow{a}$=(-1,1),$\overrightarrow{b}$=(3,-4)的夹角为θ,sinθ的值为$\frac{\sqrt{2}}{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知集合U={1,3,5,7,9},A={1,5,7},则∁UA=(  )
A.{9,3}B.{3,7,9}C.{3,5,9}D.{3,1}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=loga(x+2),g(x)=loga(2-x)(a>0,且a≠1)
(1)判断函数f(x)+g(x)的奇偶性,并说明理由;
(2)求f($\sqrt{3}$)+g($\sqrt{3}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知a=($\frac{1}{2}$)${\;}^{\frac{1}{2}}$,b=($\frac{1}{3}$)-2,c=log${\;}_{\frac{1}{2}}$2,则a,b,c的大小关系是(  )
A.a>b>cB.a>c>bC.c>b>aD.b>a>c

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=x3-3ax.
(Ⅰ)若函数f(x)在x=1处的切线斜率为2,求实数a;
(Ⅱ)若a=1,求函数f(x)在区间[0,3]的最值及所对应的x的值.

查看答案和解析>>

同步练习册答案