精英家教网 > 高中数学 > 题目详情
定义在R上的奇函数f(x)在(0,+∞)上是增函数,又f(-3)=0,则不等式xf(x)<0的解集为
 
分析:易判断f(x)在(-∞,0)上的单调性及f(x)图象所过特殊点,作出f(x)的草图,根据图象可解不等式.
解答:精英家教网解:∵f(x)在R上是奇函数,且f(x)在(0,+∞)上是增函数,
∴f(x)在(-∞,0)上也是增函数,
由f(-3)=0,得-f(3)=0,即f(3)=0,由f(-0)=-f(0),得f(0)=0,
作出f(x)的草图,如图所示:
由图象,得xf(x)<0?
x>0
f(x)<0
x<0
f(x)>0
?0<x<3或-3<x<0,
∴xf(x)<0的解集为:(-3,0)∪(0,3),
故答案为:(-3,0)∪(0,3).
点评:本题考查函数奇偶性、单调性的综合应用,考查数形结合思想,灵活作出函数的草图是解题关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

定义在R上的奇函数f(x)满足f(2x)=-2f(x),f(-1)=
1
2
,则f(2)的值为(  )
A、-1B、-2C、2D、1

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的奇函数f(x)在(0,+∞)上是增函数,又f(-3)=0,则不等式xf(x)<0的解集为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的奇函数f(x)在[0,+∞)是增函数,判断f(x)在(-∞,0)上的增减性,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的奇函数f(x)满足:当x>0时,f(x)=2010x+log2010x,则方程f(x)=0的实根的个数为
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的奇函数f(x),当x≥0时,f(x)=x3+x2,则f(x)=
x3+x2    x≥0
 
x3-x2     x<0
x3+x2    x≥0
 
x3-x2     x<0

查看答案和解析>>

同步练习册答案