精英家教网 > 高中数学 > 题目详情
7.已知函数f(x)是定义在R上的奇函数,当x≥0时,f(x)=x2-6x+a,则不等式f(x)<|x|的解集是(  )
A.(0,7)B.(-5,7)C.(-5,0)D.(-∞,-5)∪(0,7)

分析 根据函数奇偶性的性质先求出a的值,以及函数的解析式,进行求解即可.

解答 解:∵函数f(x)是定义在R上的奇函数,当x≥0时,f(x)=x2-6x+a,
∴f(0)=0,即a=0,即当x≥0时,f(x)=x2-6x,
若x<0,则-x>0,则f(-x)=x2+6x=-f(x),
即f(x)=-x2-6x,x<0,
当x≥0时,不等式f(x)<|x|等价为x2-6x<x,即x2-7x<0,即0<x<7,
当x<0时,不等式f(x)<|x|等价为-x2-6x<-x,即x2+5x>0,即x>0或x<-5,此时x<-5,
综上不等式的解为0<x<7或x<-5,
即不等式的解集为(-∞,-5)∪(0,7),
故选:D

点评 本题主要考查不等式的求解,结合函数奇偶性的性质进行转化求解是解决本题的关键.注意要进行分类讨论.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.已知等差数列{an}中,${a_5}=\frac{π}{2}$若函数f(x)=sin2x-cosx-1,设cn=f(an),则数列{cn}的前9项和为(  )
A.0B.1C.9D.-9

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的短轴长为2$\sqrt{3}$,离心率e=$\frac{1}{2}$,
(1)求椭圆C的标准方程:
(2)若F1、F2分别是椭圆C的左、右焦点,过F2的直线l与椭圆C交于不同的两点A、B,求△F1AB的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若正数a,b满足ab=a+b+3,则ab的取值范围是(  )
A.(3,9]B.[9,+∞)C.[9,27]D.[27,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数f(x)=cos2x的最小正周期为(  )
A.$\frac{π}{2}$B.πC.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.盒子中有大小形状完全相同的4个红球和3个白球,从中不放回的一次摸出两个球,在第一次摸出的是红球的前提下,第二次也摸出红球的概率为(  )
A.$\frac{2}{7}$B.$\frac{2}{3}$C.$\frac{1}{2}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.如图,AB是圆O的直径,直线CE和圆O相切于点C,AD⊥CE于D,若AD=1,∠ABC=30°,则圆O的面积是(  )
A.B.C.D.16π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在北纬60°的纬度圈上,有甲、乙两地,两地间纬度圈上的弧长等于$\frac{πR}{4}$(R为地球半径),则这两地的球面距离是R$arccos\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.幂函数f(x)的图象经过点$({2,\frac{1}{8}})$,则函数f(x)的解析式为f(x)=x-3(x≠0).

查看答案和解析>>

同步练习册答案